Metamath Proof Explorer


Theorem liminfresicompt

Description: The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresicompt.1 ( 𝜑𝑀 ∈ ℝ )
liminfresicompt.2 𝑍 = ( 𝑀 [,) +∞ )
liminfresicompt.3 ( 𝜑𝐴𝑉 )
Assertion liminfresicompt ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 liminfresicompt.1 ( 𝜑𝑀 ∈ ℝ )
2 liminfresicompt.2 𝑍 = ( 𝑀 [,) +∞ )
3 liminfresicompt.3 ( 𝜑𝐴𝑉 )
4 resmpt3 ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) = ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 )
5 4 eqcomi ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) = ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 )
6 5 a1i ( 𝜑 → ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) = ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) )
7 6 fveq2d ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) ) = ( lim inf ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) ) )
8 3 mptexd ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ V )
9 1 2 8 liminfresico ( 𝜑 → ( lim inf ‘ ( ( 𝑥𝐴𝐵 ) ↾ 𝑍 ) ) = ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) )
10 7 9 eqtrd ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴𝑍 ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) )