Step |
Hyp |
Ref |
Expression |
1 |
|
liminfresicompt.1 |
|- ( ph -> M e. RR ) |
2 |
|
liminfresicompt.2 |
|- Z = ( M [,) +oo ) |
3 |
|
liminfresicompt.3 |
|- ( ph -> A e. V ) |
4 |
|
resmpt3 |
|- ( ( x e. A |-> B ) |` Z ) = ( x e. ( A i^i Z ) |-> B ) |
5 |
4
|
eqcomi |
|- ( x e. ( A i^i Z ) |-> B ) = ( ( x e. A |-> B ) |` Z ) |
6 |
5
|
a1i |
|- ( ph -> ( x e. ( A i^i Z ) |-> B ) = ( ( x e. A |-> B ) |` Z ) ) |
7 |
6
|
fveq2d |
|- ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( ( x e. A |-> B ) |` Z ) ) ) |
8 |
3
|
mptexd |
|- ( ph -> ( x e. A |-> B ) e. _V ) |
9 |
1 2 8
|
liminfresico |
|- ( ph -> ( liminf ` ( ( x e. A |-> B ) |` Z ) ) = ( liminf ` ( x e. A |-> B ) ) ) |
10 |
7 9
|
eqtrd |
|- ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( x e. A |-> B ) ) ) |