Metamath Proof Explorer


Theorem liminfresicompt

Description: The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresicompt.1
|- ( ph -> M e. RR )
liminfresicompt.2
|- Z = ( M [,) +oo )
liminfresicompt.3
|- ( ph -> A e. V )
Assertion liminfresicompt
|- ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( x e. A |-> B ) ) )

Proof

Step Hyp Ref Expression
1 liminfresicompt.1
 |-  ( ph -> M e. RR )
2 liminfresicompt.2
 |-  Z = ( M [,) +oo )
3 liminfresicompt.3
 |-  ( ph -> A e. V )
4 resmpt3
 |-  ( ( x e. A |-> B ) |` Z ) = ( x e. ( A i^i Z ) |-> B )
5 4 eqcomi
 |-  ( x e. ( A i^i Z ) |-> B ) = ( ( x e. A |-> B ) |` Z )
6 5 a1i
 |-  ( ph -> ( x e. ( A i^i Z ) |-> B ) = ( ( x e. A |-> B ) |` Z ) )
7 6 fveq2d
 |-  ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( ( x e. A |-> B ) |` Z ) ) )
8 3 mptexd
 |-  ( ph -> ( x e. A |-> B ) e. _V )
9 1 2 8 liminfresico
 |-  ( ph -> ( liminf ` ( ( x e. A |-> B ) |` Z ) ) = ( liminf ` ( x e. A |-> B ) ) )
10 7 9 eqtrd
 |-  ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( x e. A |-> B ) ) )