| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfresicompt.1 |
|- ( ph -> M e. RR ) |
| 2 |
|
liminfresicompt.2 |
|- Z = ( M [,) +oo ) |
| 3 |
|
liminfresicompt.3 |
|- ( ph -> A e. V ) |
| 4 |
|
resmpt3 |
|- ( ( x e. A |-> B ) |` Z ) = ( x e. ( A i^i Z ) |-> B ) |
| 5 |
4
|
eqcomi |
|- ( x e. ( A i^i Z ) |-> B ) = ( ( x e. A |-> B ) |` Z ) |
| 6 |
5
|
a1i |
|- ( ph -> ( x e. ( A i^i Z ) |-> B ) = ( ( x e. A |-> B ) |` Z ) ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( ( x e. A |-> B ) |` Z ) ) ) |
| 8 |
3
|
mptexd |
|- ( ph -> ( x e. A |-> B ) e. _V ) |
| 9 |
1 2 8
|
liminfresico |
|- ( ph -> ( liminf ` ( ( x e. A |-> B ) |` Z ) ) = ( liminf ` ( x e. A |-> B ) ) ) |
| 10 |
7 9
|
eqtrd |
|- ( ph -> ( liminf ` ( x e. ( A i^i Z ) |-> B ) ) = ( liminf ` ( x e. A |-> B ) ) ) |