Description: An example where the liminf is strictly smaller than the limsup . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | liminfltlimsupex.1 | |- F = ( n e. NN |-> if ( 2 || n , 0 , 1 ) ) |
|
Assertion | liminfltlimsupex | |- ( liminf ` F ) < ( limsup ` F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfltlimsupex.1 | |- F = ( n e. NN |-> if ( 2 || n , 0 , 1 ) ) |
|
2 | 0lt1 | |- 0 < 1 |
|
3 | 1 | liminf10ex | |- ( liminf ` F ) = 0 |
4 | 1 | limsup10ex | |- ( limsup ` F ) = 1 |
5 | 3 4 | breq12i | |- ( ( liminf ` F ) < ( limsup ` F ) <-> 0 < 1 ) |
6 | 2 5 | mpbir | |- ( liminf ` F ) < ( limsup ` F ) |