Step |
Hyp |
Ref |
Expression |
1 |
|
limsup10ex.1 |
|- F = ( n e. NN |-> if ( 2 || n , 0 , 1 ) ) |
2 |
|
nftru |
|- F/ k T. |
3 |
|
nnex |
|- NN e. _V |
4 |
3
|
a1i |
|- ( T. -> NN e. _V ) |
5 |
|
0xr |
|- 0 e. RR* |
6 |
5
|
a1i |
|- ( n e. NN -> 0 e. RR* ) |
7 |
|
1xr |
|- 1 e. RR* |
8 |
7
|
a1i |
|- ( n e. NN -> 1 e. RR* ) |
9 |
6 8
|
ifcld |
|- ( n e. NN -> if ( 2 || n , 0 , 1 ) e. RR* ) |
10 |
1 9
|
fmpti |
|- F : NN --> RR* |
11 |
10
|
a1i |
|- ( T. -> F : NN --> RR* ) |
12 |
|
eqid |
|- ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) |
13 |
2 4 11 12
|
limsupval3 |
|- ( T. -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) , RR* , < ) ) |
14 |
13
|
mptru |
|- ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) , RR* , < ) |
15 |
|
id |
|- ( k e. RR -> k e. RR ) |
16 |
1 15
|
limsup10exlem |
|- ( k e. RR -> ( F " ( k [,) +oo ) ) = { 0 , 1 } ) |
17 |
16
|
supeq1d |
|- ( k e. RR -> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) = sup ( { 0 , 1 } , RR* , < ) ) |
18 |
|
xrltso |
|- < Or RR* |
19 |
|
suppr |
|- ( ( < Or RR* /\ 0 e. RR* /\ 1 e. RR* ) -> sup ( { 0 , 1 } , RR* , < ) = if ( 1 < 0 , 0 , 1 ) ) |
20 |
18 5 7 19
|
mp3an |
|- sup ( { 0 , 1 } , RR* , < ) = if ( 1 < 0 , 0 , 1 ) |
21 |
|
0le1 |
|- 0 <_ 1 |
22 |
|
0re |
|- 0 e. RR |
23 |
|
1re |
|- 1 e. RR |
24 |
22 23
|
lenlti |
|- ( 0 <_ 1 <-> -. 1 < 0 ) |
25 |
21 24
|
mpbi |
|- -. 1 < 0 |
26 |
25
|
iffalsei |
|- if ( 1 < 0 , 0 , 1 ) = 1 |
27 |
20 26
|
eqtri |
|- sup ( { 0 , 1 } , RR* , < ) = 1 |
28 |
17 27
|
eqtrdi |
|- ( k e. RR -> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) = 1 ) |
29 |
28
|
mpteq2ia |
|- ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> 1 ) |
30 |
29
|
rneqi |
|- ran ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ran ( k e. RR |-> 1 ) |
31 |
|
eqid |
|- ( k e. RR |-> 1 ) = ( k e. RR |-> 1 ) |
32 |
|
ren0 |
|- RR =/= (/) |
33 |
32
|
a1i |
|- ( T. -> RR =/= (/) ) |
34 |
31 33
|
rnmptc |
|- ( T. -> ran ( k e. RR |-> 1 ) = { 1 } ) |
35 |
34
|
mptru |
|- ran ( k e. RR |-> 1 ) = { 1 } |
36 |
30 35
|
eqtri |
|- ran ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = { 1 } |
37 |
36
|
infeq1i |
|- inf ( ran ( k e. RR |-> sup ( ( F " ( k [,) +oo ) ) , RR* , < ) ) , RR* , < ) = inf ( { 1 } , RR* , < ) |
38 |
|
infsn |
|- ( ( < Or RR* /\ 1 e. RR* ) -> inf ( { 1 } , RR* , < ) = 1 ) |
39 |
18 7 38
|
mp2an |
|- inf ( { 1 } , RR* , < ) = 1 |
40 |
14 37 39
|
3eqtri |
|- ( limsup ` F ) = 1 |