| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminf10ex.1 |
|- F = ( n e. NN |-> if ( 2 || n , 0 , 1 ) ) |
| 2 |
|
nftru |
|- F/ k T. |
| 3 |
|
nnex |
|- NN e. _V |
| 4 |
3
|
a1i |
|- ( T. -> NN e. _V ) |
| 5 |
|
0xr |
|- 0 e. RR* |
| 6 |
5
|
a1i |
|- ( n e. NN -> 0 e. RR* ) |
| 7 |
|
1xr |
|- 1 e. RR* |
| 8 |
7
|
a1i |
|- ( n e. NN -> 1 e. RR* ) |
| 9 |
6 8
|
ifcld |
|- ( n e. NN -> if ( 2 || n , 0 , 1 ) e. RR* ) |
| 10 |
1 9
|
fmpti |
|- F : NN --> RR* |
| 11 |
10
|
a1i |
|- ( T. -> F : NN --> RR* ) |
| 12 |
|
eqid |
|- ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) |
| 13 |
2 4 11 12
|
liminfval5 |
|- ( T. -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) , RR* , < ) ) |
| 14 |
13
|
mptru |
|- ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) , RR* , < ) |
| 15 |
|
id |
|- ( k e. RR -> k e. RR ) |
| 16 |
1 15
|
limsup10exlem |
|- ( k e. RR -> ( F " ( k [,) +oo ) ) = { 0 , 1 } ) |
| 17 |
16
|
infeq1d |
|- ( k e. RR -> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) = inf ( { 0 , 1 } , RR* , < ) ) |
| 18 |
|
xrltso |
|- < Or RR* |
| 19 |
|
infpr |
|- ( ( < Or RR* /\ 0 e. RR* /\ 1 e. RR* ) -> inf ( { 0 , 1 } , RR* , < ) = if ( 0 < 1 , 0 , 1 ) ) |
| 20 |
18 5 7 19
|
mp3an |
|- inf ( { 0 , 1 } , RR* , < ) = if ( 0 < 1 , 0 , 1 ) |
| 21 |
|
0lt1 |
|- 0 < 1 |
| 22 |
21
|
iftruei |
|- if ( 0 < 1 , 0 , 1 ) = 0 |
| 23 |
20 22
|
eqtri |
|- inf ( { 0 , 1 } , RR* , < ) = 0 |
| 24 |
17 23
|
eqtrdi |
|- ( k e. RR -> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) = 0 ) |
| 25 |
24
|
mpteq2ia |
|- ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ( k e. RR |-> 0 ) |
| 26 |
25
|
rneqi |
|- ran ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = ran ( k e. RR |-> 0 ) |
| 27 |
|
eqid |
|- ( k e. RR |-> 0 ) = ( k e. RR |-> 0 ) |
| 28 |
|
ren0 |
|- RR =/= (/) |
| 29 |
28
|
a1i |
|- ( T. -> RR =/= (/) ) |
| 30 |
27 29
|
rnmptc |
|- ( T. -> ran ( k e. RR |-> 0 ) = { 0 } ) |
| 31 |
30
|
mptru |
|- ran ( k e. RR |-> 0 ) = { 0 } |
| 32 |
26 31
|
eqtri |
|- ran ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) = { 0 } |
| 33 |
32
|
supeq1i |
|- sup ( ran ( k e. RR |-> inf ( ( F " ( k [,) +oo ) ) , RR* , < ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) |
| 34 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
| 35 |
18 5 34
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
| 36 |
14 33 35
|
3eqtri |
|- ( liminf ` F ) = 0 |