Step |
Hyp |
Ref |
Expression |
1 |
|
liminflelimsuplem.1 |
|- ( ph -> F e. V ) |
2 |
|
liminflelimsuplem.2 |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
3 |
|
simpr |
|- ( ( i e. RR /\ l e. RR ) -> l e. RR ) |
4 |
|
simpl |
|- ( ( i e. RR /\ l e. RR ) -> i e. RR ) |
5 |
3 4
|
ifcld |
|- ( ( i e. RR /\ l e. RR ) -> if ( i <_ l , l , i ) e. RR ) |
6 |
5
|
adantll |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> if ( i <_ l , l , i ) e. RR ) |
7 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
8 |
|
oveq1 |
|- ( k = if ( i <_ l , l , i ) -> ( k [,) +oo ) = ( if ( i <_ l , l , i ) [,) +oo ) ) |
9 |
8
|
rexeqdv |
|- ( k = if ( i <_ l , l , i ) -> ( E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> E. j e. ( if ( i <_ l , l , i ) [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
10 |
9
|
rspcva |
|- ( ( if ( i <_ l , l , i ) e. RR /\ A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> E. j e. ( if ( i <_ l , l , i ) [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
11 |
6 7 10
|
syl2anc |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> E. j e. ( if ( i <_ l , l , i ) [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
12 |
|
inss2 |
|- ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* |
13 |
|
infxrcl |
|- ( ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
14 |
12 13
|
ax-mp |
|- inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
15 |
14
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
16 |
|
inss2 |
|- ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* |
17 |
|
infxrcl |
|- ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
18 |
16 17
|
ax-mp |
|- inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
19 |
18
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
20 |
|
inss2 |
|- ( ( F " ( l [,) +oo ) ) i^i RR* ) C_ RR* |
21 |
|
supxrcl |
|- ( ( ( F " ( l [,) +oo ) ) i^i RR* ) C_ RR* -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
22 |
20 21
|
ax-mp |
|- sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
23 |
22
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
24 |
|
rexr |
|- ( i e. RR -> i e. RR* ) |
25 |
24
|
ad2antrr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> i e. RR* ) |
26 |
|
pnfxr |
|- +oo e. RR* |
27 |
26
|
a1i |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> +oo e. RR* ) |
28 |
5
|
rexrd |
|- ( ( i e. RR /\ l e. RR ) -> if ( i <_ l , l , i ) e. RR* ) |
29 |
28
|
adantr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> if ( i <_ l , l , i ) e. RR* ) |
30 |
|
icossxr |
|- ( if ( i <_ l , l , i ) [,) +oo ) C_ RR* |
31 |
|
id |
|- ( j e. ( if ( i <_ l , l , i ) [,) +oo ) -> j e. ( if ( i <_ l , l , i ) [,) +oo ) ) |
32 |
30 31
|
sselid |
|- ( j e. ( if ( i <_ l , l , i ) [,) +oo ) -> j e. RR* ) |
33 |
32
|
adantl |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> j e. RR* ) |
34 |
|
max1 |
|- ( ( i e. RR /\ l e. RR ) -> i <_ if ( i <_ l , l , i ) ) |
35 |
34
|
adantr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> i <_ if ( i <_ l , l , i ) ) |
36 |
|
simpr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> j e. ( if ( i <_ l , l , i ) [,) +oo ) ) |
37 |
29 27 36
|
icogelbd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> if ( i <_ l , l , i ) <_ j ) |
38 |
25 29 33 35 37
|
xrletrd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> i <_ j ) |
39 |
25 27 38
|
icossico2 |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( j [,) +oo ) C_ ( i [,) +oo ) ) |
40 |
39
|
imass2d |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( F " ( j [,) +oo ) ) C_ ( F " ( i [,) +oo ) ) ) |
41 |
40
|
ssrind |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( i [,) +oo ) ) i^i RR* ) ) |
42 |
12
|
a1i |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* ) |
43 |
|
infxrss |
|- ( ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( i [,) +oo ) ) i^i RR* ) /\ ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
45 |
44
|
adantr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
46 |
|
supxrcl |
|- ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
47 |
16 46
|
ax-mp |
|- sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
48 |
47
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
49 |
16
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* ) |
50 |
|
simpr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
51 |
49 50
|
infxrlesupxr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
52 |
|
rexr |
|- ( l e. RR -> l e. RR* ) |
53 |
52
|
ad2antlr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> l e. RR* ) |
54 |
|
max2 |
|- ( ( i e. RR /\ l e. RR ) -> l <_ if ( i <_ l , l , i ) ) |
55 |
54
|
adantr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> l <_ if ( i <_ l , l , i ) ) |
56 |
53 29 33 55 37
|
xrletrd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> l <_ j ) |
57 |
53 27 56
|
icossico2 |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( j [,) +oo ) C_ ( l [,) +oo ) ) |
58 |
57
|
imass2d |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( F " ( j [,) +oo ) ) C_ ( F " ( l [,) +oo ) ) ) |
59 |
58
|
ssrind |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( l [,) +oo ) ) i^i RR* ) ) |
60 |
20
|
a1i |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( l [,) +oo ) ) i^i RR* ) C_ RR* ) |
61 |
|
supxrss |
|- ( ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( l [,) +oo ) ) i^i RR* ) /\ ( ( F " ( l [,) +oo ) ) i^i RR* ) C_ RR* ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
62 |
59 60 61
|
syl2anc |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
63 |
62
|
adantr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
64 |
19 48 23 51 63
|
xrletrd |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
65 |
15 19 23 45 64
|
xrletrd |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
66 |
65
|
ad5ant2345 |
|- ( ( ( ( ( ph /\ i e. RR ) /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
67 |
66
|
rexlimdva2 |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> ( E. j e. ( if ( i <_ l , l , i ) [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
68 |
11 67
|
mpd |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
69 |
68
|
ralrimiva |
|- ( ( ph /\ i e. RR ) -> A. l e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
70 |
|
nfv |
|- F/ l ph |
71 |
|
xrltso |
|- < Or RR* |
72 |
71
|
supex |
|- sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
73 |
72
|
a1i |
|- ( ( ph /\ l e. RR ) -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V ) |
74 |
|
breq2 |
|- ( y = sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) -> ( inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
75 |
70 73 74
|
ralrnmpt3 |
|- ( ph -> ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. l e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
76 |
75
|
adantr |
|- ( ( ph /\ i e. RR ) -> ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. l e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
77 |
69 76
|
mpbird |
|- ( ( ph /\ i e. RR ) -> A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) |
78 |
|
oveq1 |
|- ( l = i -> ( l [,) +oo ) = ( i [,) +oo ) ) |
79 |
78
|
imaeq2d |
|- ( l = i -> ( F " ( l [,) +oo ) ) = ( F " ( i [,) +oo ) ) ) |
80 |
79
|
ineq1d |
|- ( l = i -> ( ( F " ( l [,) +oo ) ) i^i RR* ) = ( ( F " ( i [,) +oo ) ) i^i RR* ) ) |
81 |
80
|
supeq1d |
|- ( l = i -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
82 |
81
|
cbvmptv |
|- ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
83 |
82
|
rneqi |
|- ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
84 |
83
|
raleqi |
|- ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) |
85 |
84
|
a1i |
|- ( ( ph /\ i e. RR ) -> ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) ) |
86 |
77 85
|
mpbid |
|- ( ( ph /\ i e. RR ) -> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) |
87 |
|
supxrcl |
|- ( ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* -> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
88 |
12 87
|
ax-mp |
|- sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
89 |
88
|
rgenw |
|- A. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
90 |
|
eqid |
|- ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
91 |
90
|
rnmptss |
|- ( A. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* -> ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* ) |
92 |
89 91
|
ax-mp |
|- ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* |
93 |
92
|
a1i |
|- ( ( ph /\ i e. RR ) -> ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* ) |
94 |
14
|
a1i |
|- ( ( ph /\ i e. RR ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
95 |
|
infxrgelb |
|- ( ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* /\ inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) -> ( inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) ) |
96 |
93 94 95
|
syl2anc |
|- ( ( ph /\ i e. RR ) -> ( inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) ) |
97 |
86 96
|
mpbird |
|- ( ( ph /\ i e. RR ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
98 |
97
|
ralrimiva |
|- ( ph -> A. i e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
99 |
|
nfv |
|- F/ i ph |
100 |
|
nfcv |
|- F/_ i RR |
101 |
|
nfmpt1 |
|- F/_ i ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
102 |
101
|
nfrn |
|- F/_ i ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
103 |
|
nfcv |
|- F/_ i RR* |
104 |
|
nfcv |
|- F/_ i < |
105 |
102 103 104
|
nfinf |
|- F/_ i inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
106 |
|
infxrcl |
|- ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* -> inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
107 |
92 106
|
ax-mp |
|- inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* |
108 |
107
|
a1i |
|- ( ph -> inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
109 |
99 100 105 94 108
|
supxrleubrnmptf |
|- ( ph -> ( sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <-> A. i e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) ) |
110 |
98 109
|
mpbird |
|- ( ph -> sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
111 |
|
eqid |
|- ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
112 |
1 111
|
liminfvald |
|- ( ph -> ( liminf ` F ) = sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
113 |
1 90
|
limsupvald |
|- ( ph -> ( limsup ` F ) = inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
114 |
112 113
|
breq12d |
|- ( ph -> ( ( liminf ` F ) <_ ( limsup ` F ) <-> sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) ) |
115 |
110 114
|
mpbird |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |