| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminflelimsuplem.1 |
|- ( ph -> F e. V ) |
| 2 |
|
liminflelimsuplem.2 |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
| 3 |
|
inss2 |
|- ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* |
| 4 |
|
infxrcl |
|- ( ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 5 |
3 4
|
ax-mp |
|- inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 6 |
5
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 7 |
|
inss2 |
|- ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* |
| 8 |
|
infxrcl |
|- ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 9 |
7 8
|
ax-mp |
|- inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 10 |
9
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 11 |
|
inss2 |
|- ( ( F " ( l [,) +oo ) ) i^i RR* ) C_ RR* |
| 12 |
11
|
supxrcli |
|- sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 13 |
12
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 14 |
|
rexr |
|- ( i e. RR -> i e. RR* ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> i e. RR* ) |
| 16 |
|
pnfxr |
|- +oo e. RR* |
| 17 |
16
|
a1i |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> +oo e. RR* ) |
| 18 |
|
simpr |
|- ( ( i e. RR /\ l e. RR ) -> l e. RR ) |
| 19 |
|
simpl |
|- ( ( i e. RR /\ l e. RR ) -> i e. RR ) |
| 20 |
18 19
|
ifcld |
|- ( ( i e. RR /\ l e. RR ) -> if ( i <_ l , l , i ) e. RR ) |
| 21 |
20
|
rexrd |
|- ( ( i e. RR /\ l e. RR ) -> if ( i <_ l , l , i ) e. RR* ) |
| 22 |
21
|
adantr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> if ( i <_ l , l , i ) e. RR* ) |
| 23 |
|
icossxr |
|- ( if ( i <_ l , l , i ) [,) +oo ) C_ RR* |
| 24 |
23
|
sseli |
|- ( j e. ( if ( i <_ l , l , i ) [,) +oo ) -> j e. RR* ) |
| 25 |
24
|
adantl |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> j e. RR* ) |
| 26 |
|
max1 |
|- ( ( i e. RR /\ l e. RR ) -> i <_ if ( i <_ l , l , i ) ) |
| 27 |
26
|
adantr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> i <_ if ( i <_ l , l , i ) ) |
| 28 |
|
simpr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> j e. ( if ( i <_ l , l , i ) [,) +oo ) ) |
| 29 |
22 17 28
|
icogelbd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> if ( i <_ l , l , i ) <_ j ) |
| 30 |
15 22 25 27 29
|
xrletrd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> i <_ j ) |
| 31 |
15 17 30
|
icossico2d |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( j [,) +oo ) C_ ( i [,) +oo ) ) |
| 32 |
31
|
imass2d |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( F " ( j [,) +oo ) ) C_ ( F " ( i [,) +oo ) ) ) |
| 33 |
32
|
ssrind |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( i [,) +oo ) ) i^i RR* ) ) |
| 34 |
|
infxrss |
|- ( ( ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( i [,) +oo ) ) i^i RR* ) /\ ( ( F " ( i [,) +oo ) ) i^i RR* ) C_ RR* ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 35 |
33 3 34
|
sylancl |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 36 |
35
|
adantr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 37 |
7
|
supxrcli |
|- sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 38 |
37
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 39 |
7
|
a1i |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 40 |
|
simpr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
| 41 |
39 40
|
infxrlesupxr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 42 |
|
rexr |
|- ( l e. RR -> l e. RR* ) |
| 43 |
42
|
ad2antlr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> l e. RR* ) |
| 44 |
|
max2 |
|- ( ( i e. RR /\ l e. RR ) -> l <_ if ( i <_ l , l , i ) ) |
| 45 |
44
|
adantr |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> l <_ if ( i <_ l , l , i ) ) |
| 46 |
43 22 25 45 29
|
xrletrd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> l <_ j ) |
| 47 |
43 17 46
|
icossico2d |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( j [,) +oo ) C_ ( l [,) +oo ) ) |
| 48 |
47
|
imass2d |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( F " ( j [,) +oo ) ) C_ ( F " ( l [,) +oo ) ) ) |
| 49 |
48
|
ssrind |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) C_ ( ( F " ( l [,) +oo ) ) i^i RR* ) ) |
| 50 |
11
|
a1i |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> ( ( F " ( l [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 51 |
49 50
|
xrsupssd |
|- ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 52 |
51
|
adantr |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> sup ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 53 |
10 38 13 41 52
|
xrletrd |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( j [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 54 |
6 10 13 36 53
|
xrletrd |
|- ( ( ( ( i e. RR /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 55 |
54
|
ad5ant2345 |
|- ( ( ( ( ( ph /\ i e. RR ) /\ l e. RR ) /\ j e. ( if ( i <_ l , l , i ) [,) +oo ) ) /\ ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 56 |
|
oveq1 |
|- ( k = if ( i <_ l , l , i ) -> ( k [,) +oo ) = ( if ( i <_ l , l , i ) [,) +oo ) ) |
| 57 |
56
|
rexeqdv |
|- ( k = if ( i <_ l , l , i ) -> ( E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> E. j e. ( if ( i <_ l , l , i ) [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
| 58 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
| 59 |
20
|
adantll |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> if ( i <_ l , l , i ) e. RR ) |
| 60 |
57 58 59
|
rspcdva |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> E. j e. ( if ( i <_ l , l , i ) [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
| 61 |
55 60
|
r19.29a |
|- ( ( ( ph /\ i e. RR ) /\ l e. RR ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 62 |
61
|
ralrimiva |
|- ( ( ph /\ i e. RR ) -> A. l e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 63 |
|
nfv |
|- F/ l ph |
| 64 |
|
xrltso |
|- < Or RR* |
| 65 |
64
|
supex |
|- sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
| 66 |
65
|
a1i |
|- ( ( ph /\ l e. RR ) -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V ) |
| 67 |
|
breq2 |
|- ( y = sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) -> ( inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 68 |
63 66 67
|
ralrnmpt3 |
|- ( ph -> ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. l e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ i e. RR ) -> ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. l e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 70 |
62 69
|
mpbird |
|- ( ( ph /\ i e. RR ) -> A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) |
| 71 |
|
oveq1 |
|- ( l = i -> ( l [,) +oo ) = ( i [,) +oo ) ) |
| 72 |
71
|
imaeq2d |
|- ( l = i -> ( F " ( l [,) +oo ) ) = ( F " ( i [,) +oo ) ) ) |
| 73 |
72
|
ineq1d |
|- ( l = i -> ( ( F " ( l [,) +oo ) ) i^i RR* ) = ( ( F " ( i [,) +oo ) ) i^i RR* ) ) |
| 74 |
73
|
supeq1d |
|- ( l = i -> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 75 |
74
|
cbvmptv |
|- ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 76 |
75
|
rneqi |
|- ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 77 |
76
|
raleqi |
|- ( A. y e. ran ( l e. RR |-> sup ( ( ( F " ( l [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) |
| 78 |
70 77
|
sylib |
|- ( ( ph /\ i e. RR ) -> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) |
| 79 |
3
|
supxrcli |
|- sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 80 |
79
|
rgenw |
|- A. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
| 81 |
|
eqid |
|- ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 82 |
81
|
rnmptss |
|- ( A. i e. RR sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* -> ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* ) |
| 83 |
80 82
|
ax-mp |
|- ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* |
| 84 |
83
|
a1i |
|- ( ( ph /\ i e. RR ) -> ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* ) |
| 85 |
|
infxrgelb |
|- ( ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* /\ inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) -> ( inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) ) |
| 86 |
84 5 85
|
sylancl |
|- ( ( ph /\ i e. RR ) -> ( inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <-> A. y e. ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ y ) ) |
| 87 |
78 86
|
mpbird |
|- ( ( ph /\ i e. RR ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 88 |
87
|
ralrimiva |
|- ( ph -> A. i e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 89 |
|
nfv |
|- F/ i ph |
| 90 |
|
nfcv |
|- F/_ i RR |
| 91 |
|
nfmpt1 |
|- F/_ i ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 92 |
91
|
nfrn |
|- F/_ i ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 93 |
|
nfcv |
|- F/_ i RR* |
| 94 |
|
nfcv |
|- F/_ i < |
| 95 |
92 93 94
|
nfinf |
|- F/_ i inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
| 96 |
5
|
a1i |
|- ( ( ph /\ i e. RR ) -> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 97 |
|
infxrcl |
|- ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) C_ RR* -> inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
| 98 |
83 97
|
ax-mp |
|- inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* |
| 99 |
98
|
a1i |
|- ( ph -> inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) e. RR* ) |
| 100 |
89 90 95 96 99
|
supxrleubrnmptf |
|- ( ph -> ( sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <-> A. i e. RR inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) ) |
| 101 |
88 100
|
mpbird |
|- ( ph -> sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 102 |
|
eqid |
|- ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 103 |
1 102
|
liminfvald |
|- ( ph -> ( liminf ` F ) = sup ( ran ( i e. RR |-> inf ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 104 |
1 81
|
limsupvald |
|- ( ph -> ( limsup ` F ) = inf ( ran ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 105 |
101 103 104
|
3brtr4d |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |