Metamath Proof Explorer


Theorem liminflelimsuplem

Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsuplem.1 φ F V
liminflelimsuplem.2 φ k j k +∞ F j +∞ *
Assertion liminflelimsuplem φ lim inf F lim sup F

Proof

Step Hyp Ref Expression
1 liminflelimsuplem.1 φ F V
2 liminflelimsuplem.2 φ k j k +∞ F j +∞ *
3 inss2 F i +∞ * *
4 infxrcl F i +∞ * * inf F i +∞ * * < *
5 3 4 ax-mp inf F i +∞ * * < *
6 5 a1i i l j if i l l i +∞ F j +∞ * inf F i +∞ * * < *
7 inss2 F j +∞ * *
8 infxrcl F j +∞ * * inf F j +∞ * * < *
9 7 8 ax-mp inf F j +∞ * * < *
10 9 a1i i l j if i l l i +∞ F j +∞ * inf F j +∞ * * < *
11 inss2 F l +∞ * *
12 11 supxrcli sup F l +∞ * * < *
13 12 a1i i l j if i l l i +∞ F j +∞ * sup F l +∞ * * < *
14 rexr i i *
15 14 ad2antrr i l j if i l l i +∞ i *
16 pnfxr +∞ *
17 16 a1i i l j if i l l i +∞ +∞ *
18 simpr i l l
19 simpl i l i
20 18 19 ifcld i l if i l l i
21 20 rexrd i l if i l l i *
22 21 adantr i l j if i l l i +∞ if i l l i *
23 icossxr if i l l i +∞ *
24 23 sseli j if i l l i +∞ j *
25 24 adantl i l j if i l l i +∞ j *
26 max1 i l i if i l l i
27 26 adantr i l j if i l l i +∞ i if i l l i
28 simpr i l j if i l l i +∞ j if i l l i +∞
29 22 17 28 icogelbd i l j if i l l i +∞ if i l l i j
30 15 22 25 27 29 xrletrd i l j if i l l i +∞ i j
31 15 17 30 icossico2d i l j if i l l i +∞ j +∞ i +∞
32 31 imass2d i l j if i l l i +∞ F j +∞ F i +∞
33 32 ssrind i l j if i l l i +∞ F j +∞ * F i +∞ *
34 infxrss F j +∞ * F i +∞ * F i +∞ * * inf F i +∞ * * < inf F j +∞ * * <
35 33 3 34 sylancl i l j if i l l i +∞ inf F i +∞ * * < inf F j +∞ * * <
36 35 adantr i l j if i l l i +∞ F j +∞ * inf F i +∞ * * < inf F j +∞ * * <
37 7 supxrcli sup F j +∞ * * < *
38 37 a1i i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < *
39 7 a1i i l j if i l l i +∞ F j +∞ * F j +∞ * *
40 simpr i l j if i l l i +∞ F j +∞ * F j +∞ *
41 39 40 infxrlesupxr i l j if i l l i +∞ F j +∞ * inf F j +∞ * * < sup F j +∞ * * <
42 rexr l l *
43 42 ad2antlr i l j if i l l i +∞ l *
44 max2 i l l if i l l i
45 44 adantr i l j if i l l i +∞ l if i l l i
46 43 22 25 45 29 xrletrd i l j if i l l i +∞ l j
47 43 17 46 icossico2d i l j if i l l i +∞ j +∞ l +∞
48 47 imass2d i l j if i l l i +∞ F j +∞ F l +∞
49 48 ssrind i l j if i l l i +∞ F j +∞ * F l +∞ *
50 11 a1i i l j if i l l i +∞ F l +∞ * *
51 49 50 xrsupssd i l j if i l l i +∞ sup F j +∞ * * < sup F l +∞ * * <
52 51 adantr i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < sup F l +∞ * * <
53 10 38 13 41 52 xrletrd i l j if i l l i +∞ F j +∞ * inf F j +∞ * * < sup F l +∞ * * <
54 6 10 13 36 53 xrletrd i l j if i l l i +∞ F j +∞ * inf F i +∞ * * < sup F l +∞ * * <
55 54 ad5ant2345 φ i l j if i l l i +∞ F j +∞ * inf F i +∞ * * < sup F l +∞ * * <
56 oveq1 k = if i l l i k +∞ = if i l l i +∞
57 56 rexeqdv k = if i l l i j k +∞ F j +∞ * j if i l l i +∞ F j +∞ *
58 2 ad2antrr φ i l k j k +∞ F j +∞ *
59 20 adantll φ i l if i l l i
60 57 58 59 rspcdva φ i l j if i l l i +∞ F j +∞ *
61 55 60 r19.29a φ i l inf F i +∞ * * < sup F l +∞ * * <
62 61 ralrimiva φ i l inf F i +∞ * * < sup F l +∞ * * <
63 nfv l φ
64 xrltso < Or *
65 64 supex sup F l +∞ * * < V
66 65 a1i φ l sup F l +∞ * * < V
67 breq2 y = sup F l +∞ * * < inf F i +∞ * * < y inf F i +∞ * * < sup F l +∞ * * <
68 63 66 67 ralrnmpt3 φ y ran l sup F l +∞ * * < inf F i +∞ * * < y l inf F i +∞ * * < sup F l +∞ * * <
69 68 adantr φ i y ran l sup F l +∞ * * < inf F i +∞ * * < y l inf F i +∞ * * < sup F l +∞ * * <
70 62 69 mpbird φ i y ran l sup F l +∞ * * < inf F i +∞ * * < y
71 oveq1 l = i l +∞ = i +∞
72 71 imaeq2d l = i F l +∞ = F i +∞
73 72 ineq1d l = i F l +∞ * = F i +∞ *
74 73 supeq1d l = i sup F l +∞ * * < = sup F i +∞ * * <
75 74 cbvmptv l sup F l +∞ * * < = i sup F i +∞ * * <
76 75 rneqi ran l sup F l +∞ * * < = ran i sup F i +∞ * * <
77 76 raleqi y ran l sup F l +∞ * * < inf F i +∞ * * < y y ran i sup F i +∞ * * < inf F i +∞ * * < y
78 70 77 sylib φ i y ran i sup F i +∞ * * < inf F i +∞ * * < y
79 3 supxrcli sup F i +∞ * * < *
80 79 rgenw i sup F i +∞ * * < *
81 eqid i sup F i +∞ * * < = i sup F i +∞ * * <
82 81 rnmptss i sup F i +∞ * * < * ran i sup F i +∞ * * < *
83 80 82 ax-mp ran i sup F i +∞ * * < *
84 83 a1i φ i ran i sup F i +∞ * * < *
85 infxrgelb ran i sup F i +∞ * * < * inf F i +∞ * * < * inf F i +∞ * * < inf ran i sup F i +∞ * * < * < y ran i sup F i +∞ * * < inf F i +∞ * * < y
86 84 5 85 sylancl φ i inf F i +∞ * * < inf ran i sup F i +∞ * * < * < y ran i sup F i +∞ * * < inf F i +∞ * * < y
87 78 86 mpbird φ i inf F i +∞ * * < inf ran i sup F i +∞ * * < * <
88 87 ralrimiva φ i inf F i +∞ * * < inf ran i sup F i +∞ * * < * <
89 nfv i φ
90 nfcv _ i
91 nfmpt1 _ i i sup F i +∞ * * <
92 91 nfrn _ i ran i sup F i +∞ * * <
93 nfcv _ i *
94 nfcv _ i <
95 92 93 94 nfinf _ i inf ran i sup F i +∞ * * < * <
96 5 a1i φ i inf F i +∞ * * < *
97 infxrcl ran i sup F i +∞ * * < * inf ran i sup F i +∞ * * < * < *
98 83 97 ax-mp inf ran i sup F i +∞ * * < * < *
99 98 a1i φ inf ran i sup F i +∞ * * < * < *
100 89 90 95 96 99 supxrleubrnmptf φ sup ran i inf F i +∞ * * < * < inf ran i sup F i +∞ * * < * < i inf F i +∞ * * < inf ran i sup F i +∞ * * < * <
101 88 100 mpbird φ sup ran i inf F i +∞ * * < * < inf ran i sup F i +∞ * * < * <
102 eqid i inf F i +∞ * * < = i inf F i +∞ * * <
103 1 102 liminfvald φ lim inf F = sup ran i inf F i +∞ * * < * <
104 1 81 limsupvald φ lim sup F = inf ran i sup F i +∞ * * < * <
105 101 103 104 3brtr4d φ lim inf F lim sup F