Metamath Proof Explorer


Theorem xrsupssd

Description: Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Hypotheses xrsupssd.1 φ B C
xrsupssd.2 φ C *
Assertion xrsupssd φ sup B * < sup C * <

Proof

Step Hyp Ref Expression
1 xrsupssd.1 φ B C
2 xrsupssd.2 φ C *
3 xrltso < Or *
4 3 a1i φ < Or *
5 1 2 sstrd φ B *
6 xrsupss B * x * y B ¬ x < y y * y < x z B y < z
7 5 6 syl φ x * y B ¬ x < y y * y < x z B y < z
8 xrsupss C * x * y C ¬ x < y y * y < x z C y < z
9 2 8 syl φ x * y C ¬ x < y y * y < x z C y < z
10 4 1 2 7 9 supssd φ ¬ sup C * < < sup B * <
11 4 7 supcl φ sup B * < *
12 4 9 supcl φ sup C * < *
13 xrlenlt sup B * < * sup C * < * sup B * < sup C * < ¬ sup C * < < sup B * <
14 11 12 13 syl2anc φ sup B * < sup C * < ¬ sup C * < < sup B * <
15 10 14 mpbird φ sup B * < sup C * <