Metamath Proof Explorer


Theorem icossico2

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses icossico2.1
|- ( ph -> B e. RR* )
icossico2.2
|- ( ph -> C e. RR* )
icossico2.3
|- ( ph -> B <_ A )
Assertion icossico2
|- ( ph -> ( A [,) C ) C_ ( B [,) C ) )

Proof

Step Hyp Ref Expression
1 icossico2.1
 |-  ( ph -> B e. RR* )
2 icossico2.2
 |-  ( ph -> C e. RR* )
3 icossico2.3
 |-  ( ph -> B <_ A )
4 2 xrleidd
 |-  ( ph -> C <_ C )
5 icossico
 |-  ( ( ( B e. RR* /\ C e. RR* ) /\ ( B <_ A /\ C <_ C ) ) -> ( A [,) C ) C_ ( B [,) C ) )
6 1 2 3 4 5 syl22anc
 |-  ( ph -> ( A [,) C ) C_ ( B [,) C ) )