Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icossico2.1 | |- ( ph -> B e. RR* ) |
|
icossico2.2 | |- ( ph -> C e. RR* ) |
||
icossico2.3 | |- ( ph -> B <_ A ) |
||
Assertion | icossico2 | |- ( ph -> ( A [,) C ) C_ ( B [,) C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icossico2.1 | |- ( ph -> B e. RR* ) |
|
2 | icossico2.2 | |- ( ph -> C e. RR* ) |
|
3 | icossico2.3 | |- ( ph -> B <_ A ) |
|
4 | 2 | xrleidd | |- ( ph -> C <_ C ) |
5 | icossico | |- ( ( ( B e. RR* /\ C e. RR* ) /\ ( B <_ A /\ C <_ C ) ) -> ( A [,) C ) C_ ( B [,) C ) ) |
|
6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( A [,) C ) C_ ( B [,) C ) ) |