Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Real intervals
icossico2
Metamath Proof Explorer
Description: Condition for a closed-below, open-above interval to be a subset of a
closed-below, open-above interval. (Contributed by Glauco Siliprandi , 2-Jan-2022)
Ref
Expression
Hypotheses
icossico2.1
⊢ ( 𝜑 → 𝐵 ∈ ℝ* )
icossico2.2
⊢ ( 𝜑 → 𝐶 ∈ ℝ* )
icossico2.3
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 )
Assertion
icossico2
⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
icossico2.1
⊢ ( 𝜑 → 𝐵 ∈ ℝ* )
2
icossico2.2
⊢ ( 𝜑 → 𝐶 ∈ ℝ* )
3
icossico2.3
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 )
4
2
xrleidd
⊢ ( 𝜑 → 𝐶 ≤ 𝐶 )
5
icossico
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐶 ) ) → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) )
6
1 2 3 4 5
syl22anc
⊢ ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) )