Metamath Proof Explorer


Theorem icossico2

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses icossico2.1 ( 𝜑𝐵 ∈ ℝ* )
icossico2.2 ( 𝜑𝐶 ∈ ℝ* )
icossico2.3 ( 𝜑𝐵𝐴 )
Assertion icossico2 ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) )

Proof

Step Hyp Ref Expression
1 icossico2.1 ( 𝜑𝐵 ∈ ℝ* )
2 icossico2.2 ( 𝜑𝐶 ∈ ℝ* )
3 icossico2.3 ( 𝜑𝐵𝐴 )
4 2 xrleidd ( 𝜑𝐶𝐶 )
5 icossico ( ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐵𝐴𝐶𝐶 ) ) → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) )
6 1 2 3 4 5 syl22anc ( 𝜑 → ( 𝐴 [,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) )