Step |
Hyp |
Ref |
Expression |
1 |
|
liminflelimsup.1 |
|- ( ph -> F e. V ) |
2 |
|
liminflelimsup.2 |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
3 |
|
oveq1 |
|- ( k = i -> ( k [,) +oo ) = ( i [,) +oo ) ) |
4 |
3
|
rexeqdv |
|- ( k = i -> ( E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> E. j e. ( i [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
5 |
|
oveq1 |
|- ( j = l -> ( j [,) +oo ) = ( l [,) +oo ) ) |
6 |
5
|
imaeq2d |
|- ( j = l -> ( F " ( j [,) +oo ) ) = ( F " ( l [,) +oo ) ) ) |
7 |
6
|
ineq1d |
|- ( j = l -> ( ( F " ( j [,) +oo ) ) i^i RR* ) = ( ( F " ( l [,) +oo ) ) i^i RR* ) ) |
8 |
7
|
neeq1d |
|- ( j = l -> ( ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> ( ( F " ( l [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
9 |
8
|
cbvrexvw |
|- ( E. j e. ( i [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> E. l e. ( i [,) +oo ) ( ( F " ( l [,) +oo ) ) i^i RR* ) =/= (/) ) |
10 |
9
|
a1i |
|- ( k = i -> ( E. j e. ( i [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> E. l e. ( i [,) +oo ) ( ( F " ( l [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
11 |
4 10
|
bitrd |
|- ( k = i -> ( E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> E. l e. ( i [,) +oo ) ( ( F " ( l [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
12 |
11
|
cbvralvw |
|- ( A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) <-> A. i e. RR E. l e. ( i [,) +oo ) ( ( F " ( l [,) +oo ) ) i^i RR* ) =/= (/) ) |
13 |
2 12
|
sylib |
|- ( ph -> A. i e. RR E. l e. ( i [,) +oo ) ( ( F " ( l [,) +oo ) ) i^i RR* ) =/= (/) ) |
14 |
1 13
|
liminflelimsuplem |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |