Metamath Proof Explorer


Theorem liminf10ex

Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminf10ex.1 F=nif2n01
Assertion liminf10ex lim infF=0

Proof

Step Hyp Ref Expression
1 liminf10ex.1 F=nif2n01
2 nftru k
3 nnex V
4 3 a1i V
5 0xr 0*
6 5 a1i n0*
7 1xr 1*
8 7 a1i n1*
9 6 8 ifcld nif2n01*
10 1 9 fmpti F:*
11 10 a1i F:*
12 eqid ksupFk+∞*<=ksupFk+∞*<
13 2 4 11 12 liminfval5 lim infF=supranksupFk+∞*<*<
14 13 mptru lim infF=supranksupFk+∞*<*<
15 id kk
16 1 15 limsup10exlem kFk+∞=01
17 16 infeq1d ksupFk+∞*<=sup01*<
18 xrltso <Or*
19 infpr <Or*0*1*sup01*<=if0<101
20 18 5 7 19 mp3an sup01*<=if0<101
21 0lt1 0<1
22 21 iftruei if0<101=0
23 20 22 eqtri sup01*<=0
24 17 23 eqtrdi ksupFk+∞*<=0
25 24 mpteq2ia ksupFk+∞*<=k0
26 25 rneqi ranksupFk+∞*<=rank0
27 eqid k0=k0
28 ren0
29 28 a1i
30 27 29 rnmptc rank0=0
31 30 mptru rank0=0
32 26 31 eqtri ranksupFk+∞*<=0
33 32 supeq1i supranksupFk+∞*<*<=sup0*<
34 supsn <Or*0*sup0*<=0
35 18 5 34 mp2an sup0*<=0
36 14 33 35 3eqtri lim infF=0