Step |
Hyp |
Ref |
Expression |
1 |
|
liminfgelimsup.1 |
|- ( ph -> F e. V ) |
2 |
|
liminfgelimsup.2 |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
3 |
1
|
liminfcld |
|- ( ph -> ( liminf ` F ) e. RR* ) |
4 |
3
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) e. RR* ) |
5 |
1
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
6 |
5
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( limsup ` F ) e. RR* ) |
7 |
1 2
|
liminflelimsup |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |
8 |
7
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) <_ ( limsup ` F ) ) |
9 |
|
simpr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
10 |
4 6 8 9
|
xrletrid |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) = ( limsup ` F ) ) |
11 |
5
|
adantr |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> ( limsup ` F ) e. RR* ) |
12 |
|
id |
|- ( ( liminf ` F ) = ( limsup ` F ) -> ( liminf ` F ) = ( limsup ` F ) ) |
13 |
12
|
eqcomd |
|- ( ( liminf ` F ) = ( limsup ` F ) -> ( limsup ` F ) = ( liminf ` F ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> ( limsup ` F ) = ( liminf ` F ) ) |
15 |
11 14
|
xreqled |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
16 |
10 15
|
impbida |
|- ( ph -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) ) |