| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfgelimsup.1 |
|- ( ph -> F e. V ) |
| 2 |
|
liminfgelimsup.2 |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
| 3 |
1
|
liminfcld |
|- ( ph -> ( liminf ` F ) e. RR* ) |
| 4 |
3
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) e. RR* ) |
| 5 |
1
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( limsup ` F ) e. RR* ) |
| 7 |
1 2
|
liminflelimsup |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) <_ ( limsup ` F ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 10 |
4 6 8 9
|
xrletrid |
|- ( ( ph /\ ( limsup ` F ) <_ ( liminf ` F ) ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> ( limsup ` F ) e. RR* ) |
| 12 |
|
id |
|- ( ( liminf ` F ) = ( limsup ` F ) -> ( liminf ` F ) = ( limsup ` F ) ) |
| 13 |
12
|
eqcomd |
|- ( ( liminf ` F ) = ( limsup ` F ) -> ( limsup ` F ) = ( liminf ` F ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> ( limsup ` F ) = ( liminf ` F ) ) |
| 15 |
11 14
|
xreqled |
|- ( ( ph /\ ( liminf ` F ) = ( limsup ` F ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
| 16 |
10 15
|
impbida |
|- ( ph -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) ) |