Step |
Hyp |
Ref |
Expression |
1 |
|
liminfgelimsup.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
liminfgelimsup.2 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
3 |
1
|
liminfcld |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
5 |
1
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
7 |
1 2
|
liminflelimsup |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
10 |
4 6 8 9
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
12 |
|
id |
⊢ ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
15 |
11 14
|
xreqled |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
16 |
10 15
|
impbida |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |