Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvalxr.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
liminfvalxr.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
liminfvalxr.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
4 |
|
nftru |
⊢ Ⅎ 𝑘 ⊤ |
5 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
6 |
|
infxrcl |
⊢ ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
7 |
5 6
|
ax-mp |
⊢ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* |
8 |
7
|
a1i |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℝ ) → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
9 |
4 8
|
supminfxrrnmpt |
⊢ ( ⊤ → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
10 |
9
|
mptru |
⊢ sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
12 |
|
tru |
⊢ ⊤ |
13 |
|
inss2 |
⊢ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
14 |
13
|
a1i |
⊢ ( ⊤ → ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
15 |
14
|
supminfxr2 |
⊢ ( ⊤ → sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = -𝑒 inf ( { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } , ℝ* , < ) ) |
16 |
12 15
|
ax-mp |
⊢ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = -𝑒 inf ( { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } , ℝ* , < ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = -𝑒 inf ( { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } , ℝ* , < ) ) |
18 |
|
elinel1 |
⊢ ( -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) |
19 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
20 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ 𝑦 ) ∈ V |
21 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
22 |
20 21
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) Fn 𝐴 |
23 |
22
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) Fn 𝐴 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) → ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) Fn 𝐴 ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) → -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) |
26 |
19 24 25
|
fvelimad |
⊢ ( ( 𝜑 ∧ -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) |
27 |
26
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ∧ -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) |
28 |
18 27
|
syl3an3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ∧ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) |
29 |
|
elinel2 |
⊢ ( -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → -𝑒 𝑧 ∈ ℝ* ) |
30 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ 𝐴 ) |
31 |
20
|
a1i |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → -𝑒 ( 𝐹 ‘ 𝑦 ) ∈ V ) |
32 |
21
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ -𝑒 ( 𝐹 ‘ 𝑦 ) ∈ V ) → ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
34 |
33
|
eqcomd |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → -𝑒 ( 𝐹 ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) → -𝑒 ( 𝐹 ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) ) |
36 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) → ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) |
37 |
35 36
|
eqtrd |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) → -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) |
38 |
37
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) → -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) |
39 |
|
eqcom |
⊢ ( -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ↔ -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
40 |
39
|
biimpi |
⊢ ( -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 → -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) → -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
42 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑧 ∈ ℝ* ) |
43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
44 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑦 ∈ 𝐴 ) |
45 |
43 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
47 |
|
xneg11 |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) → ( -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
42 46 47
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) → ( -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
41 49
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) → 𝑧 = ( 𝐹 ‘ 𝑦 ) ) |
51 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
52 |
51 30
|
anim12i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( Fun 𝐹 ∧ 𝑦 ∈ 𝐴 ) ) |
53 |
52
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → Fun 𝐹 ) |
54 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
55 |
54
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom 𝐹 ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝐴 = dom 𝐹 ) |
57 |
44 56
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑦 ∈ dom 𝐹 ) |
58 |
53 57
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) |
59 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ( 𝑘 [,) +∞ ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑦 ∈ ( 𝑘 [,) +∞ ) ) |
61 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑦 ∈ ( 𝑘 [,) +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) ) |
62 |
58 60 61
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
63 |
62
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
64 |
50 63
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 𝑧 ) → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
65 |
38 64
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) ∧ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 ) → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
66 |
65
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) → ( ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) ) |
67 |
66
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ∧ -𝑒 𝑧 ∈ ℝ* ) → ( ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) ) |
68 |
29 67
|
syl3an3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ∧ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ( ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ‘ 𝑦 ) = -𝑒 𝑧 → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) ) |
69 |
28 68
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ∧ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
70 |
69
|
rabssdv |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
71 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } ⊆ ℝ* |
72 |
71
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } ⊆ ℝ* ) |
73 |
70 72
|
ssind |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
74 |
5
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
75 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → 𝐹 Fn 𝐴 ) |
77 |
|
elinel1 |
⊢ ( 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
79 |
|
fvelima2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑧 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) = 𝑧 ) |
80 |
76 78 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) = 𝑧 ) |
81 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → 𝑧 ∈ ℝ* ) |
82 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) |
83 |
82
|
biimpi |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → 𝑧 = ( 𝐹 ‘ 𝑦 ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → 𝑧 = ( 𝐹 ‘ 𝑦 ) ) |
85 |
84
|
xnegeqd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
86 |
|
simpl |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → 𝑧 ∈ ℝ* ) |
87 |
84 86
|
eqeltrrd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
88 |
86 87 47
|
syl2anc |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → ( -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ↔ 𝑧 = ( 𝐹 ‘ 𝑦 ) ) ) |
89 |
85 88
|
mpbid |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → 𝑧 = ( 𝐹 ‘ 𝑦 ) ) |
90 |
89
|
xnegeqd |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) = 𝑧 ) → -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
91 |
90
|
ex |
⊢ ( 𝑧 ∈ ℝ* → ( ( 𝐹 ‘ 𝑦 ) = 𝑧 → -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
92 |
91
|
reximdv |
⊢ ( 𝑧 ∈ ℝ* → ( ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) = 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
93 |
81 92
|
syl |
⊢ ( 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) → ( ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) = 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ( ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) = 𝑧 → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
95 |
80 94
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
96 |
|
xnegex |
⊢ -𝑒 𝑧 ∈ V |
97 |
|
elmptima |
⊢ ( -𝑒 𝑧 ∈ V → ( -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ↔ ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
98 |
96 97
|
ax-mp |
⊢ ( -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ↔ ∃ 𝑦 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) -𝑒 𝑧 = -𝑒 ( 𝐹 ‘ 𝑦 ) ) |
99 |
95 98
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → -𝑒 𝑧 ∈ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ) |
100 |
74
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → 𝑧 ∈ ℝ* ) |
101 |
100
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → -𝑒 𝑧 ∈ ℝ* ) |
102 |
99 101
|
elind |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) → -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
103 |
74 102
|
ssrabdv |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } ) |
104 |
73 103
|
eqssd |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
105 |
104
|
infeq1d |
⊢ ( 𝜑 → inf ( { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
106 |
105
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 inf ( { 𝑧 ∈ ℝ* ∣ -𝑒 𝑧 ∈ ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) } , ℝ* , < ) = -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
107 |
17 106
|
eqtr2d |
⊢ ( 𝜑 → -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
108 |
107
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
109 |
108
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
110 |
109
|
infeq1d |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
111 |
110
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ -𝑒 inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
112 |
11 111
|
eqtrd |
⊢ ( 𝜑 → sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
113 |
3 2
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
114 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
115 |
114
|
liminfval |
⊢ ( 𝐹 ∈ V → ( lim inf ‘ 𝐹 ) = sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
116 |
113 115
|
syl |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
117 |
2
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ∈ V ) |
118 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
119 |
118
|
limsupval |
⊢ ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ∈ V → ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
120 |
117 119
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
121 |
120
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) = -𝑒 inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
122 |
112 116 121
|
3eqtr4d |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) ) |
123 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
124 |
1 123
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
125 |
124
|
nfxneg |
⊢ Ⅎ 𝑥 -𝑒 ( 𝐹 ‘ 𝑦 ) |
126 |
|
nfcv |
⊢ Ⅎ 𝑦 -𝑒 ( 𝐹 ‘ 𝑥 ) |
127 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
128 |
127
|
xnegeqd |
⊢ ( 𝑦 = 𝑥 → -𝑒 ( 𝐹 ‘ 𝑦 ) = -𝑒 ( 𝐹 ‘ 𝑥 ) ) |
129 |
125 126 128
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑥 ) ) |
130 |
129
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) = ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑥 ) ) ) |
131 |
130
|
xnegeqi |
⊢ -𝑒 ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑥 ) ) ) |
132 |
131
|
a1i |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑦 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑦 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑥 ) ) ) ) |
133 |
122 132
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( 𝐹 ‘ 𝑥 ) ) ) ) |