Step |
Hyp |
Ref |
Expression |
1 |
|
liminfresuz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
liminfresuz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
liminfresuz.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
4 |
|
liminfresuz.d |
⊢ ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ ℤ ) |
5 |
|
rescom |
⊢ ( ( 𝐹 ↾ 𝑍 ) ↾ ℝ ) = ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) |
6 |
5
|
fveq2i |
⊢ ( lim inf ‘ ( ( 𝐹 ↾ 𝑍 ) ↾ ℝ ) ) = ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ 𝑍 ) ↾ ℝ ) ) = ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) ) ) |
8 |
|
relres |
⊢ Rel ( 𝐹 ↾ ℝ ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → Rel ( 𝐹 ↾ ℝ ) ) |
10 |
|
relssres |
⊢ ( ( Rel ( 𝐹 ↾ ℝ ) ∧ dom ( 𝐹 ↾ ℝ ) ⊆ ℤ ) → ( ( 𝐹 ↾ ℝ ) ↾ ℤ ) = ( 𝐹 ↾ ℝ ) ) |
11 |
9 4 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ℝ ) ↾ ℤ ) = ( 𝐹 ↾ ℝ ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) = ( ( 𝐹 ↾ ℝ ) ↾ ℤ ) ) |
13 |
12
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ℝ ) ↾ ( 𝑀 [,) +∞ ) ) = ( ( ( 𝐹 ↾ ℝ ) ↾ ℤ ) ↾ ( 𝑀 [,) +∞ ) ) ) |
14 |
|
resres |
⊢ ( ( ( 𝐹 ↾ ℝ ) ↾ ℤ ) ↾ ( 𝑀 [,) +∞ ) ) = ( ( 𝐹 ↾ ℝ ) ↾ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ℝ ) ↾ ℤ ) ↾ ( 𝑀 [,) +∞ ) ) = ( ( 𝐹 ↾ ℝ ) ↾ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) ) |
16 |
1 2
|
uzinico |
⊢ ( 𝜑 → 𝑍 = ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) |
17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( ℤ ∩ ( 𝑀 [,) +∞ ) ) = 𝑍 ) |
18 |
17
|
reseq2d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ℝ ) ↾ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) = ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) ) |
19 |
13 15 18
|
3eqtrrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) = ( ( 𝐹 ↾ ℝ ) ↾ ( 𝑀 [,) +∞ ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) ) = ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ ( 𝑀 [,) +∞ ) ) ) ) |
21 |
1
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
22 |
|
eqid |
⊢ ( 𝑀 [,) +∞ ) = ( 𝑀 [,) +∞ ) |
23 |
3
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ V ) |
24 |
21 22 23
|
liminfresico |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ ( 𝑀 [,) +∞ ) ) ) = ( lim inf ‘ ( 𝐹 ↾ ℝ ) ) ) |
25 |
20 24
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ 𝑍 ) ) = ( lim inf ‘ ( 𝐹 ↾ ℝ ) ) ) |
26 |
7 25
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ 𝑍 ) ↾ ℝ ) ) = ( lim inf ‘ ( 𝐹 ↾ ℝ ) ) ) |
27 |
3
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑍 ) ∈ V ) |
28 |
27
|
liminfresre |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ 𝑍 ) ↾ ℝ ) ) = ( lim inf ‘ ( 𝐹 ↾ 𝑍 ) ) ) |
29 |
3
|
liminfresre |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ ℝ ) ) = ( lim inf ‘ 𝐹 ) ) |
30 |
26 28 29
|
3eqtr3d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ 𝑍 ) ) = ( lim inf ‘ 𝐹 ) ) |