Metamath Proof Explorer


Theorem liminfresuz

Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresuz.m φ M
liminfresuz.z Z = M
liminfresuz.f φ F V
liminfresuz.d φ dom F
Assertion liminfresuz φ lim inf F Z = lim inf F

Proof

Step Hyp Ref Expression
1 liminfresuz.m φ M
2 liminfresuz.z Z = M
3 liminfresuz.f φ F V
4 liminfresuz.d φ dom F
5 rescom F Z = F Z
6 5 fveq2i lim inf F Z = lim inf F Z
7 6 a1i φ lim inf F Z = lim inf F Z
8 relres Rel F
9 8 a1i φ Rel F
10 relssres Rel F dom F F = F
11 9 4 10 syl2anc φ F = F
12 11 eqcomd φ F = F
13 12 reseq1d φ F M +∞ = F M +∞
14 resres F M +∞ = F M +∞
15 14 a1i φ F M +∞ = F M +∞
16 1 2 uzinico φ Z = M +∞
17 16 eqcomd φ M +∞ = Z
18 17 reseq2d φ F M +∞ = F Z
19 13 15 18 3eqtrrd φ F Z = F M +∞
20 19 fveq2d φ lim inf F Z = lim inf F M +∞
21 1 zred φ M
22 eqid M +∞ = M +∞
23 3 resexd φ F V
24 21 22 23 liminfresico φ lim inf F M +∞ = lim inf F
25 20 24 eqtrd φ lim inf F Z = lim inf F
26 7 25 eqtrd φ lim inf F Z = lim inf F
27 3 resexd φ F Z V
28 27 liminfresre φ lim inf F Z = lim inf F Z
29 3 liminfresre φ lim inf F = lim inf F
30 26 28 29 3eqtr3d φ lim inf F Z = lim inf F