Metamath Proof Explorer


Theorem liminflelimsupuz

Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsupuz.1 φ M
liminflelimsupuz.2 Z = M
liminflelimsupuz.3 φ F : Z *
Assertion liminflelimsupuz φ lim inf F lim sup F

Proof

Step Hyp Ref Expression
1 liminflelimsupuz.1 φ M
2 liminflelimsupuz.2 Z = M
3 liminflelimsupuz.3 φ F : Z *
4 2 fvexi Z V
5 4 a1i φ Z V
6 3 5 fexd φ F V
7 1 2 uzubico2 φ k j k +∞ j Z
8 3 ffnd φ F Fn Z
9 8 adantr φ j Z F Fn Z
10 simpr φ j Z j Z
11 id j Z j Z
12 2 11 uzxrd j Z j *
13 pnfxr +∞ *
14 13 a1i j Z +∞ *
15 12 xrleidd j Z j j
16 2 11 uzred j Z j
17 ltpnf j j < +∞
18 16 17 syl j Z j < +∞
19 12 14 12 15 18 elicod j Z j j +∞
20 19 adantl φ j Z j j +∞
21 9 10 20 fnfvimad φ j Z F j F j +∞
22 3 ffvelrnda φ j Z F j *
23 21 22 elind φ j Z F j F j +∞ *
24 23 ne0d φ j Z F j +∞ *
25 24 ex φ j Z F j +∞ *
26 25 ad2antrr φ k j k +∞ j Z F j +∞ *
27 26 reximdva φ k j k +∞ j Z j k +∞ F j +∞ *
28 27 ralimdva φ k j k +∞ j Z k j k +∞ F j +∞ *
29 7 28 mpd φ k j k +∞ F j +∞ *
30 6 29 liminflelimsup φ lim inf F lim sup F