Metamath Proof Explorer


Theorem uzxrd

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzxrd.1 Z=M
uzxrd.2 φAZ
Assertion uzxrd φA*

Proof

Step Hyp Ref Expression
1 uzxrd.1 Z=M
2 uzxrd.2 φAZ
3 ressxr *
4 1 2 uzred φA
5 3 4 sselid φA*