Metamath Proof Explorer
		
		
		
		Description:  An upper integer is an extended real.  (Contributed by Glauco
       Siliprandi, 2-Jan-2022)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | uzxrd.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
					
						|  |  | uzxrd.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑍 ) | 
				
					|  | Assertion | uzxrd | ⊢  ( 𝜑  →  𝐴  ∈  ℝ* ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzxrd.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | uzxrd.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑍 ) | 
						
							| 3 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 4 | 1 2 | uzred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 | 3 4 | sselid | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) |