Step |
Hyp |
Ref |
Expression |
1 |
|
liminfresuz.m |
|- ( ph -> M e. ZZ ) |
2 |
|
liminfresuz.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
liminfresuz.f |
|- ( ph -> F e. V ) |
4 |
|
liminfresuz.d |
|- ( ph -> dom ( F |` RR ) C_ ZZ ) |
5 |
|
rescom |
|- ( ( F |` Z ) |` RR ) = ( ( F |` RR ) |` Z ) |
6 |
5
|
fveq2i |
|- ( liminf ` ( ( F |` Z ) |` RR ) ) = ( liminf ` ( ( F |` RR ) |` Z ) ) |
7 |
6
|
a1i |
|- ( ph -> ( liminf ` ( ( F |` Z ) |` RR ) ) = ( liminf ` ( ( F |` RR ) |` Z ) ) ) |
8 |
|
relres |
|- Rel ( F |` RR ) |
9 |
8
|
a1i |
|- ( ph -> Rel ( F |` RR ) ) |
10 |
|
relssres |
|- ( ( Rel ( F |` RR ) /\ dom ( F |` RR ) C_ ZZ ) -> ( ( F |` RR ) |` ZZ ) = ( F |` RR ) ) |
11 |
9 4 10
|
syl2anc |
|- ( ph -> ( ( F |` RR ) |` ZZ ) = ( F |` RR ) ) |
12 |
11
|
eqcomd |
|- ( ph -> ( F |` RR ) = ( ( F |` RR ) |` ZZ ) ) |
13 |
12
|
reseq1d |
|- ( ph -> ( ( F |` RR ) |` ( M [,) +oo ) ) = ( ( ( F |` RR ) |` ZZ ) |` ( M [,) +oo ) ) ) |
14 |
|
resres |
|- ( ( ( F |` RR ) |` ZZ ) |` ( M [,) +oo ) ) = ( ( F |` RR ) |` ( ZZ i^i ( M [,) +oo ) ) ) |
15 |
14
|
a1i |
|- ( ph -> ( ( ( F |` RR ) |` ZZ ) |` ( M [,) +oo ) ) = ( ( F |` RR ) |` ( ZZ i^i ( M [,) +oo ) ) ) ) |
16 |
1 2
|
uzinico |
|- ( ph -> Z = ( ZZ i^i ( M [,) +oo ) ) ) |
17 |
16
|
eqcomd |
|- ( ph -> ( ZZ i^i ( M [,) +oo ) ) = Z ) |
18 |
17
|
reseq2d |
|- ( ph -> ( ( F |` RR ) |` ( ZZ i^i ( M [,) +oo ) ) ) = ( ( F |` RR ) |` Z ) ) |
19 |
13 15 18
|
3eqtrrd |
|- ( ph -> ( ( F |` RR ) |` Z ) = ( ( F |` RR ) |` ( M [,) +oo ) ) ) |
20 |
19
|
fveq2d |
|- ( ph -> ( liminf ` ( ( F |` RR ) |` Z ) ) = ( liminf ` ( ( F |` RR ) |` ( M [,) +oo ) ) ) ) |
21 |
1
|
zred |
|- ( ph -> M e. RR ) |
22 |
|
eqid |
|- ( M [,) +oo ) = ( M [,) +oo ) |
23 |
3
|
resexd |
|- ( ph -> ( F |` RR ) e. _V ) |
24 |
21 22 23
|
liminfresico |
|- ( ph -> ( liminf ` ( ( F |` RR ) |` ( M [,) +oo ) ) ) = ( liminf ` ( F |` RR ) ) ) |
25 |
20 24
|
eqtrd |
|- ( ph -> ( liminf ` ( ( F |` RR ) |` Z ) ) = ( liminf ` ( F |` RR ) ) ) |
26 |
7 25
|
eqtrd |
|- ( ph -> ( liminf ` ( ( F |` Z ) |` RR ) ) = ( liminf ` ( F |` RR ) ) ) |
27 |
3
|
resexd |
|- ( ph -> ( F |` Z ) e. _V ) |
28 |
27
|
liminfresre |
|- ( ph -> ( liminf ` ( ( F |` Z ) |` RR ) ) = ( liminf ` ( F |` Z ) ) ) |
29 |
3
|
liminfresre |
|- ( ph -> ( liminf ` ( F |` RR ) ) = ( liminf ` F ) ) |
30 |
26 28 29
|
3eqtr3d |
|- ( ph -> ( liminf ` ( F |` Z ) ) = ( liminf ` F ) ) |