| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supminfxr2.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 2 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 3 |
2
|
eqcomi |
⊢ +∞ = -𝑒 -∞ |
| 4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → +∞ = -𝑒 -∞ ) |
| 5 |
|
supxrpnf |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 6 |
1 5
|
sylan |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 7 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* |
| 8 |
7
|
a1i |
⊢ ( +∞ ∈ 𝐴 → { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* ) |
| 9 |
|
xnegeq |
⊢ ( 𝑦 = -∞ → -𝑒 𝑦 = -𝑒 -∞ ) |
| 10 |
2
|
a1i |
⊢ ( 𝑦 = -∞ → -𝑒 -∞ = +∞ ) |
| 11 |
9 10
|
eqtrd |
⊢ ( 𝑦 = -∞ → -𝑒 𝑦 = +∞ ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑦 = -∞ → ( -𝑒 𝑦 ∈ 𝐴 ↔ +∞ ∈ 𝐴 ) ) |
| 13 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 14 |
13
|
a1i |
⊢ ( +∞ ∈ 𝐴 → -∞ ∈ ℝ* ) |
| 15 |
|
id |
⊢ ( +∞ ∈ 𝐴 → +∞ ∈ 𝐴 ) |
| 16 |
12 14 15
|
elrabd |
⊢ ( +∞ ∈ 𝐴 → -∞ ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) |
| 17 |
|
infxrmnf |
⊢ ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* ∧ -∞ ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 18 |
8 16 17
|
syl2anc |
⊢ ( +∞ ∈ 𝐴 → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 20 |
19
|
xnegeqd |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 -∞ ) |
| 21 |
4 6 20
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
| 22 |
1
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { -∞ } ) ⊆ ℝ* ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ( 𝐴 ∖ { -∞ } ) ⊆ ℝ* ) |
| 24 |
|
difssd |
⊢ ( ¬ +∞ ∈ 𝐴 → ( 𝐴 ∖ { -∞ } ) ⊆ 𝐴 ) |
| 25 |
|
id |
⊢ ( ¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ 𝐴 ) |
| 26 |
|
ssnel |
⊢ ( ( ( 𝐴 ∖ { -∞ } ) ⊆ 𝐴 ∧ ¬ +∞ ∈ 𝐴 ) → ¬ +∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 27 |
24 25 26
|
syl2anc |
⊢ ( ¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ¬ +∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 29 |
|
neldifsnd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ¬ -∞ ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 30 |
23 28 29
|
xrssre |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → ( 𝐴 ∖ { -∞ } ) ⊆ ℝ ) |
| 31 |
30
|
supminfxr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
| 32 |
|
supxrmnf2 |
⊢ ( 𝐴 ⊆ ℝ* → sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
| 33 |
1 32
|
syl |
⊢ ( 𝜑 → sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) = sup ( 𝐴 , ℝ* , < ) ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = sup ( ( 𝐴 ∖ { -∞ } ) , ℝ* , < ) ) |
| 36 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ ℝ* ) |
| 38 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ ℝ ) |
| 39 |
38
|
rexnegd |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → -𝑒 𝑦 = - 𝑦 ) |
| 40 |
|
eldifi |
⊢ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → - 𝑦 ∈ 𝐴 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → - 𝑦 ∈ 𝐴 ) |
| 42 |
39 41
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → -𝑒 𝑦 ∈ 𝐴 ) |
| 43 |
37 42
|
jca |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 ∈ 𝐴 ) ) |
| 44 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ↔ ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 ∈ 𝐴 ) ) |
| 45 |
43 44
|
sylibr |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) |
| 46 |
|
renepnf |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ≠ +∞ ) |
| 47 |
|
elsni |
⊢ ( 𝑦 ∈ { +∞ } → 𝑦 = +∞ ) |
| 48 |
47
|
necon3ai |
⊢ ( 𝑦 ≠ +∞ → ¬ 𝑦 ∈ { +∞ } ) |
| 49 |
46 48
|
syl |
⊢ ( 𝑦 ∈ ℝ → ¬ 𝑦 ∈ { +∞ } ) |
| 50 |
38 49
|
syl |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → ¬ 𝑦 ∈ { +∞ } ) |
| 51 |
45 50
|
eldifd |
⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
| 52 |
51
|
ex |
⊢ ( 𝑦 ∈ ℝ → ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) ) |
| 53 |
52
|
rgen |
⊢ ∀ 𝑦 ∈ ℝ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
| 54 |
53
|
a1i |
⊢ ( ¬ +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) ) |
| 55 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑦 { +∞ } |
| 57 |
55 56
|
nfdif |
⊢ Ⅎ 𝑦 ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) |
| 58 |
57
|
rabssf |
⊢ ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ⊆ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ↔ ∀ 𝑦 ∈ ℝ ( - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) → 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) ) |
| 59 |
54 58
|
sylibr |
⊢ ( ¬ +∞ ∈ 𝐴 → { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ⊆ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
| 60 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ +∞ ∈ 𝐴 |
| 61 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
| 62 |
|
eldifi |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ) |
| 63 |
7 62
|
sselid |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → 𝑦 ∈ ℝ* ) |
| 64 |
63
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ∈ ℝ* ) |
| 65 |
44
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } → -𝑒 𝑦 ∈ 𝐴 ) |
| 66 |
62 65
|
syl |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → -𝑒 𝑦 ∈ 𝐴 ) |
| 67 |
12
|
biimpac |
⊢ ( ( -𝑒 𝑦 ∈ 𝐴 ∧ 𝑦 = -∞ ) → +∞ ∈ 𝐴 ) |
| 68 |
67
|
adantll |
⊢ ( ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) ∧ 𝑦 = -∞ ) → +∞ ∈ 𝐴 ) |
| 69 |
|
simpll |
⊢ ( ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) ∧ 𝑦 = -∞ ) → ¬ +∞ ∈ 𝐴 ) |
| 70 |
68 69
|
pm2.65da |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) → ¬ 𝑦 = -∞ ) |
| 71 |
70
|
neqned |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ -𝑒 𝑦 ∈ 𝐴 ) → 𝑦 ≠ -∞ ) |
| 72 |
66 71
|
sylan2 |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ≠ -∞ ) |
| 73 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → 𝑦 ≠ +∞ ) |
| 74 |
73
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ≠ +∞ ) |
| 75 |
64 72 74
|
xrred |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → 𝑦 ∈ ℝ ) |
| 76 |
60 57 61 75
|
ssdf2 |
⊢ ( ¬ +∞ ∈ 𝐴 → ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ ℝ ) |
| 77 |
75
|
rexnegd |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → -𝑒 𝑦 = - 𝑦 ) |
| 78 |
66
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → -𝑒 𝑦 ∈ 𝐴 ) |
| 79 |
63
|
adantr |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → 𝑦 ∈ ℝ* ) |
| 80 |
|
elsni |
⊢ ( -𝑒 𝑦 ∈ { -∞ } → -𝑒 𝑦 = -∞ ) |
| 81 |
80
|
adantl |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → -𝑒 𝑦 = -∞ ) |
| 82 |
|
xnegeq |
⊢ ( -𝑒 𝑦 = -∞ → -𝑒 -𝑒 𝑦 = -𝑒 -∞ ) |
| 83 |
2
|
a1i |
⊢ ( -𝑒 𝑦 = -∞ → -𝑒 -∞ = +∞ ) |
| 84 |
82 83
|
eqtr2d |
⊢ ( -𝑒 𝑦 = -∞ → +∞ = -𝑒 -𝑒 𝑦 ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 = -∞ ) → +∞ = -𝑒 -𝑒 𝑦 ) |
| 86 |
|
xnegneg |
⊢ ( 𝑦 ∈ ℝ* → -𝑒 -𝑒 𝑦 = 𝑦 ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 = -∞ ) → -𝑒 -𝑒 𝑦 = 𝑦 ) |
| 88 |
85 87
|
eqtr2d |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -𝑒 𝑦 = -∞ ) → 𝑦 = +∞ ) |
| 89 |
79 81 88
|
syl2anc |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → 𝑦 = +∞ ) |
| 90 |
73
|
neneqd |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → ¬ 𝑦 = +∞ ) |
| 91 |
90
|
adantr |
⊢ ( ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ∧ -𝑒 𝑦 ∈ { -∞ } ) → ¬ 𝑦 = +∞ ) |
| 92 |
89 91
|
pm2.65da |
⊢ ( 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) → ¬ -𝑒 𝑦 ∈ { -∞ } ) |
| 93 |
92
|
adantl |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → ¬ -𝑒 𝑦 ∈ { -∞ } ) |
| 94 |
78 93
|
eldifd |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → -𝑒 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 95 |
77 94
|
eqeltrrd |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) → - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 96 |
95
|
ralrimiva |
⊢ ( ¬ +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) |
| 97 |
76 96
|
jca |
⊢ ( ¬ +∞ ∈ 𝐴 → ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ ℝ ∧ ∀ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) ) |
| 98 |
57 61
|
ssrabf |
⊢ ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ↔ ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ ℝ ∧ ∀ 𝑦 ∈ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) ) ) |
| 99 |
97 98
|
sylibr |
⊢ ( ¬ +∞ ∈ 𝐴 → ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ⊆ { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } ) |
| 100 |
59 99
|
eqssd |
⊢ ( ¬ +∞ ∈ 𝐴 → { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } = ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) ) |
| 101 |
100
|
infeq1d |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) = inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) ) |
| 102 |
|
infxrpnf2 |
⊢ ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ⊆ ℝ* → inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
| 103 |
7 102
|
ax-mp |
⊢ inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) |
| 104 |
103
|
a1i |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } ∖ { +∞ } ) , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
| 105 |
101 104
|
eqtr2d |
⊢ ( ¬ +∞ ∈ 𝐴 → inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
| 106 |
105
|
xnegeqd |
⊢ ( ¬ +∞ ∈ 𝐴 → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ ∣ - 𝑦 ∈ ( 𝐴 ∖ { -∞ } ) } , ℝ* , < ) ) |
| 108 |
31 35 107
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
| 109 |
21 108
|
pm2.61dan |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) ) |
| 110 |
|
xnegeq |
⊢ ( 𝑦 = 𝑥 → -𝑒 𝑦 = -𝑒 𝑥 ) |
| 111 |
110
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( -𝑒 𝑦 ∈ 𝐴 ↔ -𝑒 𝑥 ∈ 𝐴 ) ) |
| 112 |
111
|
cbvrabv |
⊢ { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } = { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } |
| 113 |
112
|
infeq1i |
⊢ inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) |
| 114 |
113
|
xnegeqi |
⊢ -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) |
| 115 |
114
|
a1i |
⊢ ( 𝜑 → -𝑒 inf ( { 𝑦 ∈ ℝ* ∣ -𝑒 𝑦 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 116 |
109 115
|
eqtrd |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ* ∣ -𝑒 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |