Step |
Hyp |
Ref |
Expression |
1 |
|
supminfxr.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
supeq1 |
⊢ ( 𝐴 = ∅ → sup ( 𝐴 , ℝ* , < ) = sup ( ∅ , ℝ* , < ) ) |
3 |
|
xrsup0 |
⊢ sup ( ∅ , ℝ* , < ) = -∞ |
4 |
3
|
a1i |
⊢ ( 𝐴 = ∅ → sup ( ∅ , ℝ* , < ) = -∞ ) |
5 |
2 4
|
eqtrd |
⊢ ( 𝐴 = ∅ → sup ( 𝐴 , ℝ* , < ) = -∞ ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ* , < ) = -∞ ) |
7 |
|
eleq2 |
⊢ ( 𝐴 = ∅ → ( - 𝑥 ∈ 𝐴 ↔ - 𝑥 ∈ ∅ ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } = { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } ) |
9 |
|
noel |
⊢ ¬ - 𝑥 ∈ ∅ |
10 |
9
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ¬ - 𝑥 ∈ ∅ ) |
11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ ¬ - 𝑥 ∈ ∅ |
12 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } = ∅ ↔ ∀ 𝑥 ∈ ℝ ¬ - 𝑥 ∈ ∅ ) |
13 |
11 12
|
mpbir |
⊢ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } = ∅ |
14 |
13
|
a1i |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } = ∅ ) |
15 |
8 14
|
eqtrd |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } = ∅ ) |
16 |
15
|
infeq1d |
⊢ ( 𝐴 = ∅ → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = inf ( ∅ , ℝ* , < ) ) |
17 |
|
xrinf0 |
⊢ inf ( ∅ , ℝ* , < ) = +∞ |
18 |
17
|
a1i |
⊢ ( 𝐴 = ∅ → inf ( ∅ , ℝ* , < ) = +∞ ) |
19 |
16 18
|
eqtrd |
⊢ ( 𝐴 = ∅ → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = +∞ ) |
20 |
19
|
xnegeqd |
⊢ ( 𝐴 = ∅ → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -𝑒 +∞ ) |
21 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
22 |
21
|
a1i |
⊢ ( 𝐴 = ∅ → -𝑒 +∞ = -∞ ) |
23 |
20 22
|
eqtrd |
⊢ ( 𝐴 = ∅ → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
25 |
6 24
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
26 |
|
neqne |
⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) |
28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → 𝐴 ≠ ∅ ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
30 |
|
negn0 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ) |
31 |
|
ublbneg |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) |
32 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ |
33 |
|
infrenegsup |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
34 |
32 33
|
mp3an1 |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
35 |
30 31 34
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
36 |
35
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
37 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } → 𝑦 ∈ ℝ ) |
38 |
37
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ) → 𝑦 ∈ ℝ ) |
39 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
40 |
|
negeq |
⊢ ( 𝑤 = 𝑦 → - 𝑤 = - 𝑦 ) |
41 |
40
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ↔ - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) ) |
42 |
41
|
elrab3 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ↔ - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) ) |
43 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
44 |
|
negeq |
⊢ ( 𝑥 = - 𝑦 → - 𝑥 = - - 𝑦 ) |
45 |
44
|
eleq1d |
⊢ ( 𝑥 = - 𝑦 → ( - 𝑥 ∈ 𝐴 ↔ - - 𝑦 ∈ 𝐴 ) ) |
46 |
45
|
elrab3 |
⊢ ( - 𝑦 ∈ ℝ → ( - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ↔ - - 𝑦 ∈ 𝐴 ) ) |
47 |
43 46
|
syl |
⊢ ( 𝑦 ∈ ℝ → ( - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ↔ - - 𝑦 ∈ 𝐴 ) ) |
48 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
49 |
48
|
negnegd |
⊢ ( 𝑦 ∈ ℝ → - - 𝑦 = 𝑦 ) |
50 |
49
|
eleq1d |
⊢ ( 𝑦 ∈ ℝ → ( - - 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
51 |
42 47 50
|
3bitrd |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ↔ 𝑦 ∈ 𝐴 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ↔ 𝑦 ∈ 𝐴 ) ) |
53 |
38 39 52
|
eqrdav |
⊢ ( 𝐴 ⊆ ℝ → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } = 𝐴 ) |
54 |
53
|
supeq1d |
⊢ ( 𝐴 ⊆ ℝ → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
55 |
54
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
56 |
55
|
negeqd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
57 |
36 56
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
58 |
|
infrecl |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
59 |
32 58
|
mp3an1 |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
60 |
30 31 59
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
61 |
60
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
62 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
63 |
|
recn |
⊢ ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ) |
64 |
|
recn |
⊢ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ → sup ( 𝐴 , ℝ , < ) ∈ ℂ ) |
65 |
|
negcon2 |
⊢ ( ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℂ ) → ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
66 |
63 64 65
|
syl2an |
⊢ ( ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
67 |
61 62 66
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
68 |
57 67
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
69 |
27 28 29 68
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
70 |
|
supxrre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |
71 |
27 28 29 70
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |
72 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ) |
73 |
27 28 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ) |
74 |
29 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) |
75 |
|
infxrre |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
76 |
72 73 74 75
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
77 |
76
|
xnegeqd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
78 |
1 60
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
79 |
78
|
rexnegd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
80 |
77 79
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
81 |
69 71 80
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
82 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
83 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
84 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
85 |
84
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
86 |
83 85
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < 𝑧 ↔ ¬ 𝑧 ≤ 𝑦 ) ) |
87 |
86
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ¬ 𝑧 ≤ 𝑦 ) ) |
88 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐴 ¬ 𝑧 ≤ 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 ¬ 𝑧 ≤ 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
90 |
87 89
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
91 |
90
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
92 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
93 |
92
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
94 |
91 93
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
96 |
82 95
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
97 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
98 |
97
|
eqcomi |
⊢ +∞ = -𝑒 -∞ |
99 |
98
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → +∞ = -𝑒 -∞ ) |
100 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
101 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
102 |
101
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
103 |
1 102
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
104 |
|
supxrunb2 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
105 |
103 104
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
107 |
100 106
|
mpbid |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
108 |
|
renegcl |
⊢ ( 𝑣 ∈ ℝ → - 𝑣 ∈ ℝ ) |
109 |
108
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ∧ 𝑣 ∈ ℝ ) → - 𝑣 ∈ ℝ ) |
110 |
|
simpl |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ∧ 𝑣 ∈ ℝ ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
111 |
|
breq1 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑦 < 𝑧 ↔ - 𝑣 < 𝑧 ) ) |
112 |
111
|
rexbidv |
⊢ ( 𝑦 = - 𝑣 → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) ) |
113 |
112
|
rspcva |
⊢ ( ( - 𝑣 ∈ ℝ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) |
114 |
109 110 113
|
syl2anc |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ∧ 𝑣 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) |
115 |
114
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ∧ 𝑣 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) |
116 |
|
negeq |
⊢ ( 𝑥 = - 𝑧 → - 𝑥 = - - 𝑧 ) |
117 |
116
|
eleq1d |
⊢ ( 𝑥 = - 𝑧 → ( - 𝑥 ∈ 𝐴 ↔ - - 𝑧 ∈ 𝐴 ) ) |
118 |
84
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → - 𝑧 ∈ ℝ ) |
119 |
118
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 ∈ ℝ ) |
120 |
84
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℂ ) |
121 |
120
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → - - 𝑧 = 𝑧 ) |
122 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
123 |
121 122
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → - - 𝑧 ∈ 𝐴 ) |
124 |
123
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - - 𝑧 ∈ 𝐴 ) |
125 |
117 119 124
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
126 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑣 < 𝑧 ) |
127 |
108
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑣 ∈ ℝ ) |
128 |
84
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → 𝑧 ∈ ℝ ) |
129 |
127 128
|
ltnegd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → ( - 𝑣 < 𝑧 ↔ - 𝑧 < - - 𝑣 ) ) |
130 |
126 129
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 < - - 𝑣 ) |
131 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → 𝑣 ∈ ℝ ) |
132 |
|
recn |
⊢ ( 𝑣 ∈ ℝ → 𝑣 ∈ ℂ ) |
133 |
|
negneg |
⊢ ( 𝑣 ∈ ℂ → - - 𝑣 = 𝑣 ) |
134 |
131 132 133
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - - 𝑣 = 𝑣 ) |
135 |
130 134
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 < 𝑣 ) |
136 |
|
breq1 |
⊢ ( 𝑤 = - 𝑧 → ( 𝑤 < 𝑣 ↔ - 𝑧 < 𝑣 ) ) |
137 |
136
|
rspcev |
⊢ ( ( - 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ∧ - 𝑧 < 𝑣 ) → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
138 |
125 135 137
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
139 |
138
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) ) |
140 |
139
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ∧ 𝑣 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) ) |
141 |
115 140
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ∧ 𝑣 ∈ ℝ ) → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
142 |
141
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∀ 𝑣 ∈ ℝ ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
143 |
32 101
|
sstri |
⊢ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ* |
144 |
|
infxrunb2 |
⊢ ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ* → ( ∀ 𝑣 ∈ ℝ ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ↔ inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) ) |
145 |
143 144
|
ax-mp |
⊢ ( ∀ 𝑣 ∈ ℝ ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ↔ inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
146 |
142 145
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
147 |
146
|
xnegeqd |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -𝑒 -∞ ) |
148 |
99 107 147
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
149 |
96 148
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
150 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
151 |
81 150
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
152 |
26 151
|
sylan2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
153 |
25 152
|
pm2.61dan |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |