| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supminfxr.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
supeq1 |
⊢ ( 𝐴 = ∅ → sup ( 𝐴 , ℝ* , < ) = sup ( ∅ , ℝ* , < ) ) |
| 3 |
|
xrsup0 |
⊢ sup ( ∅ , ℝ* , < ) = -∞ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 = ∅ → sup ( ∅ , ℝ* , < ) = -∞ ) |
| 5 |
2 4
|
eqtrd |
⊢ ( 𝐴 = ∅ → sup ( 𝐴 , ℝ* , < ) = -∞ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ* , < ) = -∞ ) |
| 7 |
|
eleq2 |
⊢ ( 𝐴 = ∅ → ( - 𝑥 ∈ 𝐴 ↔ - 𝑥 ∈ ∅ ) ) |
| 8 |
7
|
rabbidv |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } = { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } ) |
| 9 |
|
noel |
⊢ ¬ - 𝑥 ∈ ∅ |
| 10 |
9
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ¬ - 𝑥 ∈ ∅ ) |
| 11 |
10
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ ¬ - 𝑥 ∈ ∅ |
| 12 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } = ∅ ↔ ∀ 𝑥 ∈ ℝ ¬ - 𝑥 ∈ ∅ ) |
| 13 |
11 12
|
mpbir |
⊢ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } = ∅ |
| 14 |
13
|
a1i |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ ∅ } = ∅ ) |
| 15 |
8 14
|
eqtrd |
⊢ ( 𝐴 = ∅ → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } = ∅ ) |
| 16 |
15
|
infeq1d |
⊢ ( 𝐴 = ∅ → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = inf ( ∅ , ℝ* , < ) ) |
| 17 |
|
xrinf0 |
⊢ inf ( ∅ , ℝ* , < ) = +∞ |
| 18 |
17
|
a1i |
⊢ ( 𝐴 = ∅ → inf ( ∅ , ℝ* , < ) = +∞ ) |
| 19 |
16 18
|
eqtrd |
⊢ ( 𝐴 = ∅ → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = +∞ ) |
| 20 |
19
|
xnegeqd |
⊢ ( 𝐴 = ∅ → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -𝑒 +∞ ) |
| 21 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
| 22 |
21
|
a1i |
⊢ ( 𝐴 = ∅ → -𝑒 +∞ = -∞ ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝐴 = ∅ → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 25 |
6 24
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 26 |
|
neqne |
⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
| 27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → 𝐴 ≠ ∅ ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
| 30 |
|
negn0 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ) |
| 31 |
|
ublbneg |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) |
| 32 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ |
| 33 |
|
infrenegsup |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
| 34 |
32 33
|
mp3an1 |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
| 35 |
30 31 34
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
| 36 |
35
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) ) |
| 37 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } → 𝑦 ∈ ℝ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ) → 𝑦 ∈ ℝ ) |
| 39 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 40 |
|
negeq |
⊢ ( 𝑤 = 𝑦 → - 𝑤 = - 𝑦 ) |
| 41 |
40
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ↔ - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) ) |
| 42 |
41
|
elrab3 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ↔ - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) ) |
| 43 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
| 44 |
|
negeq |
⊢ ( 𝑥 = - 𝑦 → - 𝑥 = - - 𝑦 ) |
| 45 |
44
|
eleq1d |
⊢ ( 𝑥 = - 𝑦 → ( - 𝑥 ∈ 𝐴 ↔ - - 𝑦 ∈ 𝐴 ) ) |
| 46 |
45
|
elrab3 |
⊢ ( - 𝑦 ∈ ℝ → ( - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ↔ - - 𝑦 ∈ 𝐴 ) ) |
| 47 |
43 46
|
syl |
⊢ ( 𝑦 ∈ ℝ → ( - 𝑦 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ↔ - - 𝑦 ∈ 𝐴 ) ) |
| 48 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 49 |
48
|
negnegd |
⊢ ( 𝑦 ∈ ℝ → - - 𝑦 = 𝑦 ) |
| 50 |
49
|
eleq1d |
⊢ ( 𝑦 ∈ ℝ → ( - - 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 51 |
42 47 50
|
3bitrd |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ↔ 𝑦 ∈ 𝐴 ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } ↔ 𝑦 ∈ 𝐴 ) ) |
| 53 |
38 39 52
|
eqrdav |
⊢ ( 𝐴 ⊆ ℝ → { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } = 𝐴 ) |
| 54 |
53
|
supeq1d |
⊢ ( 𝐴 ⊆ ℝ → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 55 |
54
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 56 |
55
|
negeqd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → - sup ( { 𝑤 ∈ ℝ ∣ - 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
| 57 |
36 56
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ) |
| 58 |
|
infrecl |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 59 |
32 58
|
mp3an1 |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 60 |
30 31 59
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 61 |
60
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 62 |
|
suprcl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 63 |
|
recn |
⊢ ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ) |
| 64 |
|
recn |
⊢ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ → sup ( 𝐴 , ℝ , < ) ∈ ℂ ) |
| 65 |
|
negcon2 |
⊢ ( ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℂ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℂ ) → ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 66 |
63 64 65
|
syl2an |
⊢ ( ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 67 |
61 62 66
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ( inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) ) |
| 68 |
57 67
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 69 |
27 28 29 68
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 70 |
|
supxrre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 71 |
27 28 29 70
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 72 |
32
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ) |
| 73 |
27 28 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ) |
| 74 |
29 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) |
| 75 |
|
infxrre |
⊢ ( ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ ∧ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑦 ≤ 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 76 |
72 73 74 75
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 77 |
76
|
xnegeqd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 78 |
1 60
|
sylanl1 |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
| 79 |
78
|
rexnegd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 80 |
77 79
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = - inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ , < ) ) |
| 81 |
69 71 80
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 82 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
| 83 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 84 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 85 |
84
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 86 |
83 85
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < 𝑧 ↔ ¬ 𝑧 ≤ 𝑦 ) ) |
| 87 |
86
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ¬ 𝑧 ≤ 𝑦 ) ) |
| 88 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐴 ¬ 𝑧 ≤ 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
| 89 |
88
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 ¬ 𝑧 ≤ 𝑦 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 90 |
87 89
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 91 |
90
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 92 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) |
| 93 |
92
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 94 |
91 93
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 96 |
82 95
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 97 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 98 |
97
|
eqcomi |
⊢ +∞ = -𝑒 -∞ |
| 99 |
98
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → +∞ = -𝑒 -∞ ) |
| 100 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 101 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
| 103 |
1 102
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 104 |
|
supxrunb2 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 105 |
103 104
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 107 |
100 106
|
mpbid |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 108 |
|
renegcl |
⊢ ( 𝑣 ∈ ℝ → - 𝑣 ∈ ℝ ) |
| 109 |
108
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ∧ 𝑣 ∈ ℝ ) → - 𝑣 ∈ ℝ ) |
| 110 |
|
simpl |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ∧ 𝑣 ∈ ℝ ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 111 |
|
breq1 |
⊢ ( 𝑦 = - 𝑣 → ( 𝑦 < 𝑧 ↔ - 𝑣 < 𝑧 ) ) |
| 112 |
111
|
rexbidv |
⊢ ( 𝑦 = - 𝑣 → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) ) |
| 113 |
112
|
rspcva |
⊢ ( ( - 𝑣 ∈ ℝ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) |
| 114 |
109 110 113
|
syl2anc |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ∧ 𝑣 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) |
| 115 |
114
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ∧ 𝑣 ∈ ℝ ) → ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 ) |
| 116 |
|
negeq |
⊢ ( 𝑥 = - 𝑧 → - 𝑥 = - - 𝑧 ) |
| 117 |
116
|
eleq1d |
⊢ ( 𝑥 = - 𝑧 → ( - 𝑥 ∈ 𝐴 ↔ - - 𝑧 ∈ 𝐴 ) ) |
| 118 |
84
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → - 𝑧 ∈ ℝ ) |
| 119 |
118
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 ∈ ℝ ) |
| 120 |
84
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℂ ) |
| 121 |
120
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → - - 𝑧 = 𝑧 ) |
| 122 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 123 |
121 122
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → - - 𝑧 ∈ 𝐴 ) |
| 124 |
123
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - - 𝑧 ∈ 𝐴 ) |
| 125 |
117 119 124
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ) |
| 126 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑣 < 𝑧 ) |
| 127 |
108
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑣 ∈ ℝ ) |
| 128 |
84
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → 𝑧 ∈ ℝ ) |
| 129 |
127 128
|
ltnegd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → ( - 𝑣 < 𝑧 ↔ - 𝑧 < - - 𝑣 ) ) |
| 130 |
126 129
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 < - - 𝑣 ) |
| 131 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → 𝑣 ∈ ℝ ) |
| 132 |
|
recn |
⊢ ( 𝑣 ∈ ℝ → 𝑣 ∈ ℂ ) |
| 133 |
|
negneg |
⊢ ( 𝑣 ∈ ℂ → - - 𝑣 = 𝑣 ) |
| 134 |
131 132 133
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - - 𝑣 = 𝑣 ) |
| 135 |
130 134
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → - 𝑧 < 𝑣 ) |
| 136 |
|
breq1 |
⊢ ( 𝑤 = - 𝑧 → ( 𝑤 < 𝑣 ↔ - 𝑧 < 𝑣 ) ) |
| 137 |
136
|
rspcev |
⊢ ( ( - 𝑧 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ∧ - 𝑧 < 𝑣 ) → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
| 138 |
125 135 137
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) ∧ - 𝑣 < 𝑧 ) → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
| 139 |
138
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) ) |
| 140 |
139
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ∧ 𝑣 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 - 𝑣 < 𝑧 → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) ) |
| 141 |
115 140
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ∧ 𝑣 ∈ ℝ ) → ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
| 142 |
141
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → ∀ 𝑣 ∈ ℝ ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ) |
| 143 |
32 101
|
sstri |
⊢ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ* |
| 144 |
|
infxrunb2 |
⊢ ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } ⊆ ℝ* → ( ∀ 𝑣 ∈ ℝ ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ↔ inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) ) |
| 145 |
143 144
|
ax-mp |
⊢ ( ∀ 𝑣 ∈ ℝ ∃ 𝑤 ∈ { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } 𝑤 < 𝑣 ↔ inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 146 |
142 145
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -∞ ) |
| 147 |
146
|
xnegeqd |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) = -𝑒 -∞ ) |
| 148 |
99 107 147
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 149 |
96 148
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 150 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 151 |
81 150
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 152 |
26 151
|
sylan2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |
| 153 |
25 152
|
pm2.61dan |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = -𝑒 inf ( { 𝑥 ∈ ℝ ∣ - 𝑥 ∈ 𝐴 } , ℝ* , < ) ) |