Metamath Proof Explorer


Theorem supminfxr2

Description: The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis supminfxr2.1 φA*
Assertion supminfxr2 φsupA*<=supx*|xA*<

Proof

Step Hyp Ref Expression
1 supminfxr2.1 φA*
2 xnegmnf −∞=+∞
3 2 eqcomi +∞=−∞
4 3 a1i φ+∞A+∞=−∞
5 supxrpnf A*+∞AsupA*<=+∞
6 1 5 sylan φ+∞AsupA*<=+∞
7 ssrab2 y*|yA*
8 7 a1i +∞Ay*|yA*
9 xnegeq y=−∞y=−∞
10 2 a1i y=−∞−∞=+∞
11 9 10 eqtrd y=−∞y=+∞
12 11 eleq1d y=−∞yA+∞A
13 mnfxr −∞*
14 13 a1i +∞A−∞*
15 id +∞A+∞A
16 12 14 15 elrabd +∞A−∞y*|yA
17 infxrmnf y*|yA*−∞y*|yAsupy*|yA*<=−∞
18 8 16 17 syl2anc +∞Asupy*|yA*<=−∞
19 18 adantl φ+∞Asupy*|yA*<=−∞
20 19 xnegeqd φ+∞Asupy*|yA*<=−∞
21 4 6 20 3eqtr4d φ+∞AsupA*<=supy*|yA*<
22 1 ssdifssd φA−∞*
23 22 adantr φ¬+∞AA−∞*
24 difssd ¬+∞AA−∞A
25 id ¬+∞A¬+∞A
26 ssnel A−∞A¬+∞A¬+∞A−∞
27 24 25 26 syl2anc ¬+∞A¬+∞A−∞
28 27 adantl φ¬+∞A¬+∞A−∞
29 neldifsnd φ¬+∞A¬−∞A−∞
30 23 28 29 xrssre φ¬+∞AA−∞
31 30 supminfxr φ¬+∞AsupA−∞*<=supy|yA−∞*<
32 supxrmnf2 A*supA−∞*<=supA*<
33 1 32 syl φsupA−∞*<=supA*<
34 33 eqcomd φsupA*<=supA−∞*<
35 34 adantr φ¬+∞AsupA*<=supA−∞*<
36 rexr yy*
37 36 adantr yyA−∞y*
38 simpl yyA−∞y
39 38 rexnegd yyA−∞y=y
40 eldifi yA−∞yA
41 40 adantl yyA−∞yA
42 39 41 eqeltrd yyA−∞yA
43 37 42 jca yyA−∞y*yA
44 rabid yy*|yAy*yA
45 43 44 sylibr yyA−∞yy*|yA
46 renepnf yy+∞
47 elsni y+∞y=+∞
48 47 necon3ai y+∞¬y+∞
49 46 48 syl y¬y+∞
50 38 49 syl yyA−∞¬y+∞
51 45 50 eldifd yyA−∞yy*|yA+∞
52 51 ex yyA−∞yy*|yA+∞
53 52 rgen yyA−∞yy*|yA+∞
54 53 a1i ¬+∞AyyA−∞yy*|yA+∞
55 nfrab1 _yy*|yA
56 nfcv _y+∞
57 55 56 nfdif _yy*|yA+∞
58 57 rabssf y|yA−∞y*|yA+∞yyA−∞yy*|yA+∞
59 54 58 sylibr ¬+∞Ay|yA−∞y*|yA+∞
60 nfv y¬+∞A
61 nfcv _y
62 eldifi yy*|yA+∞yy*|yA
63 7 62 sselid yy*|yA+∞y*
64 63 adantl ¬+∞Ayy*|yA+∞y*
65 44 simprbi yy*|yAyA
66 62 65 syl yy*|yA+∞yA
67 12 biimpac yAy=−∞+∞A
68 67 adantll ¬+∞AyAy=−∞+∞A
69 simpll ¬+∞AyAy=−∞¬+∞A
70 68 69 pm2.65da ¬+∞AyA¬y=−∞
71 70 neqned ¬+∞AyAy−∞
72 66 71 sylan2 ¬+∞Ayy*|yA+∞y−∞
73 eldifsni yy*|yA+∞y+∞
74 73 adantl ¬+∞Ayy*|yA+∞y+∞
75 64 72 74 xrred ¬+∞Ayy*|yA+∞y
76 60 57 61 75 ssdf2 ¬+∞Ay*|yA+∞
77 75 rexnegd ¬+∞Ayy*|yA+∞y=y
78 66 adantl ¬+∞Ayy*|yA+∞yA
79 63 adantr yy*|yA+∞y−∞y*
80 elsni y−∞y=−∞
81 80 adantl yy*|yA+∞y−∞y=−∞
82 xnegeq y=−∞y=−∞
83 2 a1i y=−∞−∞=+∞
84 82 83 eqtr2d y=−∞+∞=y
85 84 adantl y*y=−∞+∞=y
86 xnegneg y*y=y
87 86 adantr y*y=−∞y=y
88 85 87 eqtr2d y*y=−∞y=+∞
89 79 81 88 syl2anc yy*|yA+∞y−∞y=+∞
90 73 neneqd yy*|yA+∞¬y=+∞
91 90 adantr yy*|yA+∞y−∞¬y=+∞
92 89 91 pm2.65da yy*|yA+∞¬y−∞
93 92 adantl ¬+∞Ayy*|yA+∞¬y−∞
94 78 93 eldifd ¬+∞Ayy*|yA+∞yA−∞
95 77 94 eqeltrrd ¬+∞Ayy*|yA+∞yA−∞
96 95 ralrimiva ¬+∞Ayy*|yA+∞yA−∞
97 76 96 jca ¬+∞Ay*|yA+∞yy*|yA+∞yA−∞
98 57 61 ssrabf y*|yA+∞y|yA−∞y*|yA+∞yy*|yA+∞yA−∞
99 97 98 sylibr ¬+∞Ay*|yA+∞y|yA−∞
100 59 99 eqssd ¬+∞Ay|yA−∞=y*|yA+∞
101 100 infeq1d ¬+∞Asupy|yA−∞*<=supy*|yA+∞*<
102 infxrpnf2 y*|yA*supy*|yA+∞*<=supy*|yA*<
103 7 102 ax-mp supy*|yA+∞*<=supy*|yA*<
104 103 a1i ¬+∞Asupy*|yA+∞*<=supy*|yA*<
105 101 104 eqtr2d ¬+∞Asupy*|yA*<=supy|yA−∞*<
106 105 xnegeqd ¬+∞Asupy*|yA*<=supy|yA−∞*<
107 106 adantl φ¬+∞Asupy*|yA*<=supy|yA−∞*<
108 31 35 107 3eqtr4d φ¬+∞AsupA*<=supy*|yA*<
109 21 108 pm2.61dan φsupA*<=supy*|yA*<
110 xnegeq y=xy=x
111 110 eleq1d y=xyAxA
112 111 cbvrabv y*|yA=x*|xA
113 112 infeq1i supy*|yA*<=supx*|xA*<
114 113 xnegeqi supy*|yA*<=supx*|xA*<
115 114 a1i φsupy*|yA*<=supx*|xA*<
116 109 115 eqtrd φsupA*<=supx*|xA*<