Metamath Proof Explorer
Description: An extended real is real if and only if its extended negative is real.
(Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypothesis |
xnegred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
Assertion |
xnegred |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ -𝑒 𝐴 ∈ ℝ ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xnegred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
xnegre |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ -𝑒 𝐴 ∈ ℝ ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ -𝑒 𝐴 ∈ ℝ ) ) |