Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegre | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ -𝑒 𝐴 ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegrecl | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ ) → -𝑒 𝐴 ∈ ℝ ) |
| 3 | xnegrecl2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 4 | 2 3 | impbida | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ -𝑒 𝐴 ∈ ℝ ) ) |