Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegre | |- ( A e. RR* -> ( A e. RR <-> -e A e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegrecl | |- ( A e. RR -> -e A e. RR ) |
|
| 2 | 1 | adantl | |- ( ( A e. RR* /\ A e. RR ) -> -e A e. RR ) |
| 3 | xnegrecl2 | |- ( ( A e. RR* /\ -e A e. RR ) -> A e. RR ) |
|
| 4 | 2 3 | impbida | |- ( A e. RR* -> ( A e. RR <-> -e A e. RR ) ) |