Description: If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xnegrecl2d.1 | |- ( ph -> A e. RR* ) |
|
| xnegrecl2d.2 | |- ( ph -> -e A e. RR ) |
||
| Assertion | xnegrecl2d | |- ( ph -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegrecl2d.1 | |- ( ph -> A e. RR* ) |
|
| 2 | xnegrecl2d.2 | |- ( ph -> -e A e. RR ) |
|
| 3 | xnegrecl2 | |- ( ( A e. RR* /\ -e A e. RR ) -> A e. RR ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> A e. RR ) |