Metamath Proof Explorer


Theorem xnegrecl2d

Description: If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses xnegrecl2d.1 φA*
xnegrecl2d.2 φA
Assertion xnegrecl2d φA

Proof

Step Hyp Ref Expression
1 xnegrecl2d.1 φA*
2 xnegrecl2d.2 φA
3 xnegrecl2 A*AA
4 1 2 3 syl2anc φA