Description: If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegrecl2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegneg | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ ) → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 3 | xnegrecl | ⊢ ( -𝑒 𝐴 ∈ ℝ → -𝑒 -𝑒 𝐴 ∈ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ ) → -𝑒 -𝑒 𝐴 ∈ ℝ ) |
| 5 | 2 4 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |