Description: An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xnegred.1 | |- ( ph -> A e. RR* ) |
|
| Assertion | xnegred | |- ( ph -> ( A e. RR <-> -e A e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegred.1 | |- ( ph -> A e. RR* ) |
|
| 2 | xnegre | |- ( A e. RR* -> ( A e. RR <-> -e A e. RR ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> ( A e. RR <-> -e A e. RR ) ) |