Metamath Proof Explorer


Theorem xrssre

Description: A subset of extended reals that does not contain +oo and -oo is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses xrssre.1 ( 𝜑𝐴 ⊆ ℝ* )
xrssre.2 ( 𝜑 → ¬ +∞ ∈ 𝐴 )
xrssre.3 ( 𝜑 → ¬ -∞ ∈ 𝐴 )
Assertion xrssre ( 𝜑𝐴 ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 xrssre.1 ( 𝜑𝐴 ⊆ ℝ* )
2 xrssre.2 ( 𝜑 → ¬ +∞ ∈ 𝐴 )
3 xrssre.3 ( 𝜑 → ¬ -∞ ∈ 𝐴 )
4 ssxr ( 𝐴 ⊆ ℝ* → ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) )
5 1 4 syl ( 𝜑 → ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) )
6 3orass ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( 𝐴 ⊆ ℝ ∨ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) )
7 5 6 sylib ( 𝜑 → ( 𝐴 ⊆ ℝ ∨ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) )
8 7 orcomd ( 𝜑 → ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) )
9 2 3 jca ( 𝜑 → ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) )
10 ioran ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) )
11 9 10 sylibr ( 𝜑 → ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) )
12 df-or ( ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ↔ ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) )
13 12 biimpi ( ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) → ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) )
14 8 11 13 sylc ( 𝜑𝐴 ⊆ ℝ )