| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssuzfz.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ssuzfz.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) |
| 3 |
|
ssuzfz.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑍 ) |
| 5 |
4 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
|
eluzel2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 8 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 9 |
1 8
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → 𝑍 ⊆ ℤ ) |
| 11 |
2 10
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℤ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ⊆ ℤ ) |
| 13 |
|
ne0i |
⊢ ( 𝑘 ∈ 𝐴 → 𝐴 ≠ ∅ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ∈ Fin ) |
| 16 |
|
suprfinzcl |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 17 |
12 14 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 18 |
12 17
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℤ ) |
| 19 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 20 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑘 ) |
| 21 |
5 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑀 ≤ 𝑘 ) |
| 22 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ℤ ⊆ ℝ ) |
| 24 |
11 23
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
| 27 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) = sup ( 𝐴 , ℝ , < ) ) |
| 28 |
25 15 26 27
|
supfirege |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 29 |
7 18 19 21 28
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) |
| 30 |
29
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) ) |
| 31 |
30
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) |
| 32 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ↔ ∀ 𝑘 ∈ 𝐴 𝑘 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) |
| 33 |
31 32
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) |