| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 2 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 3 |  | soss | ⊢ ( ℤ  ⊆  ℝ  →  (  <   Or  ℝ  →   <   Or  ℤ ) ) | 
						
							| 4 | 1 2 3 | mp2 | ⊢  <   Or  ℤ | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →   <   Or  ℤ ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  𝐴  ≠  ∅ ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  𝐴  ⊆  ℤ ) | 
						
							| 9 |  | fisup2g | ⊢ ( (  <   Or  ℤ  ∧  ( 𝐴  ∈  Fin  ∧  𝐴  ≠  ∅  ∧  𝐴  ⊆  ℤ ) )  →  ∃ 𝑟  ∈  𝐴 ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) ) ) | 
						
							| 10 | 5 6 7 8 9 | syl13anc | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  ∃ 𝑟  ∈  𝐴 ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) ) ) | 
						
							| 11 |  | id | ⊢ ( 𝐴  ⊆  ℤ  →  𝐴  ⊆  ℤ ) | 
						
							| 12 | 11 1 | sstrdi | ⊢ ( 𝐴  ⊆  ℤ  →  𝐴  ⊆  ℝ ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  𝐴  ⊆  ℝ ) | 
						
							| 14 |  | ssrexv | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∃ 𝑟  ∈  𝐴 ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) )  →  ∃ 𝑟  ∈  ℝ ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  ( ∃ 𝑟  ∈  𝐴 ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) )  →  ∃ 𝑟  ∈  ℝ ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) ) ) ) | 
						
							| 16 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  ℤ ) | 
						
							| 17 | 16 | zred | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  ℝ ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝐴  ⊆  ℤ  →  ( 𝑎  ∈  𝐴  →  𝑎  ∈  ℝ ) ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  ( 𝑎  ∈  𝐴  →  𝑎  ∈  ℝ ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  →  ( 𝑎  ∈  𝐴  →  𝑎  ∈  ℝ ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  ℝ ) | 
						
							| 22 |  | simplr | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  ∧  𝑎  ∈  𝐴 )  →  𝑟  ∈  ℝ ) | 
						
							| 23 | 21 22 | lenltd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑎  ≤  𝑟  ↔  ¬  𝑟  <  𝑎 ) ) | 
						
							| 24 | 23 | bicomd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  ∧  𝑎  ∈  𝐴 )  →  ( ¬  𝑟  <  𝑎  ↔  𝑎  ≤  𝑟 ) ) | 
						
							| 25 | 24 | ralbidva | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  →  ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ↔  ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 ) ) | 
						
							| 26 | 25 | biimpd | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  →  ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  →  ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 ) ) | 
						
							| 27 | 26 | adantrd | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  ∧  𝑟  ∈  ℝ )  →  ( ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) )  →  ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 ) ) | 
						
							| 28 | 27 | reximdva | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  ( ∃ 𝑟  ∈  ℝ ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 ) ) | 
						
							| 29 | 15 28 | syld | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  ( ∃ 𝑟  ∈  𝐴 ( ∀ 𝑎  ∈  𝐴 ¬  𝑟  <  𝑎  ∧  ∀ 𝑎  ∈  ℤ ( 𝑎  <  𝑟  →  ∃ 𝑏  ∈  𝐴 𝑎  <  𝑏 ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 ) ) | 
						
							| 30 | 10 29 | mpd | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 ) | 
						
							| 31 |  | suprzcl | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑟  ∈  ℝ ∀ 𝑎  ∈  𝐴 𝑎  ≤  𝑟 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 32 | 30 31 | syld3an3 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 ) |