| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 2 |
|
ltso |
⊢ < Or ℝ |
| 3 |
|
soss |
⊢ ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) ) |
| 4 |
1 2 3
|
mp2 |
⊢ < Or ℤ |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → < Or ℤ ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 7 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) |
| 8 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℤ ) |
| 9 |
|
fisup2g |
⊢ ( ( < Or ℤ ∧ ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ ) ) → ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) |
| 10 |
5 6 7 8 9
|
syl13anc |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) |
| 11 |
|
id |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ ) |
| 12 |
11 1
|
sstrdi |
⊢ ( 𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → 𝐴 ⊆ ℝ ) |
| 14 |
|
ssrexv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) ) ) |
| 16 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℤ ) |
| 17 |
16
|
zred |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 18 |
17
|
ex |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( 𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ ) ) |
| 21 |
20
|
imp |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ℝ ) |
| 22 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → 𝑟 ∈ ℝ ) |
| 23 |
21 22
|
lenltd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ≤ 𝑟 ↔ ¬ 𝑟 < 𝑎 ) ) |
| 24 |
23
|
bicomd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑎 ∈ 𝐴 ) → ( ¬ 𝑟 < 𝑎 ↔ 𝑎 ≤ 𝑟 ) ) |
| 25 |
24
|
ralbidva |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ↔ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 26 |
25
|
biimpd |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 → ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 27 |
26
|
adantrd |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ∧ 𝑟 ∈ ℝ ) → ( ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 28 |
27
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ ℝ ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 29 |
15 28
|
syld |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑟 ∈ 𝐴 ( ∀ 𝑎 ∈ 𝐴 ¬ 𝑟 < 𝑎 ∧ ∀ 𝑎 ∈ ℤ ( 𝑎 < 𝑟 → ∃ 𝑏 ∈ 𝐴 𝑎 < 𝑏 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) ) |
| 30 |
10 29
|
mpd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) |
| 31 |
|
suprzcl |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑎 ∈ 𝐴 𝑎 ≤ 𝑟 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 32 |
30 31
|
syld3an3 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |