Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | suprfinzcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre | |
|
2 | ltso | |
|
3 | soss | |
|
4 | 1 2 3 | mp2 | |
5 | 4 | a1i | |
6 | simp3 | |
|
7 | simp2 | |
|
8 | simp1 | |
|
9 | fisup2g | |
|
10 | 5 6 7 8 9 | syl13anc | |
11 | id | |
|
12 | 11 1 | sstrdi | |
13 | 12 | 3ad2ant1 | |
14 | ssrexv | |
|
15 | 13 14 | syl | |
16 | ssel2 | |
|
17 | 16 | zred | |
18 | 17 | ex | |
19 | 18 | 3ad2ant1 | |
20 | 19 | adantr | |
21 | 20 | imp | |
22 | simplr | |
|
23 | 21 22 | lenltd | |
24 | 23 | bicomd | |
25 | 24 | ralbidva | |
26 | 25 | biimpd | |
27 | 26 | adantrd | |
28 | 27 | reximdva | |
29 | 15 28 | syld | |
30 | 10 29 | mpd | |
31 | suprzcl | |
|
32 | 30 31 | syld3an3 | |