Metamath Proof Explorer


Theorem suprfinzcl

Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Assertion suprfinzcl AAAFinsupA<A

Proof

Step Hyp Ref Expression
1 zssre
2 ltso <Or
3 soss <Or<Or
4 1 2 3 mp2 <Or
5 4 a1i AAAFin<Or
6 simp3 AAAFinAFin
7 simp2 AAAFinA
8 simp1 AAAFinA
9 fisup2g <OrAFinAArAaA¬r<aaa<rbAa<b
10 5 6 7 8 9 syl13anc AAAFinrAaA¬r<aaa<rbAa<b
11 id AA
12 11 1 sstrdi AA
13 12 3ad2ant1 AAAFinA
14 ssrexv ArAaA¬r<aaa<rbAa<braA¬r<aaa<rbAa<b
15 13 14 syl AAAFinrAaA¬r<aaa<rbAa<braA¬r<aaa<rbAa<b
16 ssel2 AaAa
17 16 zred AaAa
18 17 ex AaAa
19 18 3ad2ant1 AAAFinaAa
20 19 adantr AAAFinraAa
21 20 imp AAAFinraAa
22 simplr AAAFinraAr
23 21 22 lenltd AAAFinraAar¬r<a
24 23 bicomd AAAFinraA¬r<aar
25 24 ralbidva AAAFinraA¬r<aaAar
26 25 biimpd AAAFinraA¬r<aaAar
27 26 adantrd AAAFinraA¬r<aaa<rbAa<baAar
28 27 reximdva AAAFinraA¬r<aaa<rbAa<braAar
29 15 28 syld AAAFinrAaA¬r<aaa<rbAa<braAar
30 10 29 mpd AAAFinraAar
31 suprzcl AAraAarsupA<A
32 30 31 syld3an3 AAAFinsupA<A