| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssuzfz.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
ssuzfz.2 |
|- ( ph -> A C_ Z ) |
| 3 |
|
ssuzfz.3 |
|- ( ph -> A e. Fin ) |
| 4 |
2
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. Z ) |
| 5 |
4 1
|
eleqtrdi |
|- ( ( ph /\ k e. A ) -> k e. ( ZZ>= ` M ) ) |
| 6 |
|
eluzel2 |
|- ( k e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 7 |
5 6
|
syl |
|- ( ( ph /\ k e. A ) -> M e. ZZ ) |
| 8 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 9 |
1 8
|
eqsstri |
|- Z C_ ZZ |
| 10 |
9
|
a1i |
|- ( ph -> Z C_ ZZ ) |
| 11 |
2 10
|
sstrd |
|- ( ph -> A C_ ZZ ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ k e. A ) -> A C_ ZZ ) |
| 13 |
|
ne0i |
|- ( k e. A -> A =/= (/) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ k e. A ) -> A =/= (/) ) |
| 15 |
3
|
adantr |
|- ( ( ph /\ k e. A ) -> A e. Fin ) |
| 16 |
|
suprfinzcl |
|- ( ( A C_ ZZ /\ A =/= (/) /\ A e. Fin ) -> sup ( A , RR , < ) e. A ) |
| 17 |
12 14 15 16
|
syl3anc |
|- ( ( ph /\ k e. A ) -> sup ( A , RR , < ) e. A ) |
| 18 |
12 17
|
sseldd |
|- ( ( ph /\ k e. A ) -> sup ( A , RR , < ) e. ZZ ) |
| 19 |
11
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. ZZ ) |
| 20 |
|
eluzle |
|- ( k e. ( ZZ>= ` M ) -> M <_ k ) |
| 21 |
5 20
|
syl |
|- ( ( ph /\ k e. A ) -> M <_ k ) |
| 22 |
|
zssre |
|- ZZ C_ RR |
| 23 |
22
|
a1i |
|- ( ph -> ZZ C_ RR ) |
| 24 |
11 23
|
sstrd |
|- ( ph -> A C_ RR ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ k e. A ) -> A C_ RR ) |
| 26 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
| 27 |
|
eqidd |
|- ( ( ph /\ k e. A ) -> sup ( A , RR , < ) = sup ( A , RR , < ) ) |
| 28 |
25 15 26 27
|
supfirege |
|- ( ( ph /\ k e. A ) -> k <_ sup ( A , RR , < ) ) |
| 29 |
7 18 19 21 28
|
elfzd |
|- ( ( ph /\ k e. A ) -> k e. ( M ... sup ( A , RR , < ) ) ) |
| 30 |
29
|
ex |
|- ( ph -> ( k e. A -> k e. ( M ... sup ( A , RR , < ) ) ) ) |
| 31 |
30
|
ralrimiv |
|- ( ph -> A. k e. A k e. ( M ... sup ( A , RR , < ) ) ) |
| 32 |
|
dfss3 |
|- ( A C_ ( M ... sup ( A , RR , < ) ) <-> A. k e. A k e. ( M ... sup ( A , RR , < ) ) ) |
| 33 |
31 32
|
sylibr |
|- ( ph -> A C_ ( M ... sup ( A , RR , < ) ) ) |