Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvalxr.1 |
|
2 |
|
liminfvalxr.2 |
|
3 |
|
liminfvalxr.3 |
|
4 |
|
nftru |
|
5 |
|
inss2 |
|
6 |
|
infxrcl |
|
7 |
5 6
|
ax-mp |
|
8 |
7
|
a1i |
|
9 |
4 8
|
supminfxrrnmpt |
|
10 |
9
|
mptru |
|
11 |
10
|
a1i |
|
12 |
|
tru |
|
13 |
|
inss2 |
|
14 |
13
|
a1i |
|
15 |
14
|
supminfxr2 |
|
16 |
12 15
|
ax-mp |
|
17 |
16
|
a1i |
|
18 |
|
elinel1 |
|
19 |
|
nfmpt1 |
|
20 |
|
xnegex |
|
21 |
|
eqid |
|
22 |
20 21
|
fnmpti |
|
23 |
22
|
a1i |
|
24 |
23
|
adantr |
|
25 |
|
simpr |
|
26 |
19 24 25
|
fvelimad |
|
27 |
26
|
3adant2 |
|
28 |
18 27
|
syl3an3 |
|
29 |
|
elinel2 |
|
30 |
|
elinel1 |
|
31 |
20
|
a1i |
|
32 |
21
|
fvmpt2 |
|
33 |
30 31 32
|
syl2anc |
|
34 |
33
|
eqcomd |
|
35 |
34
|
adantr |
|
36 |
|
simpr |
|
37 |
35 36
|
eqtrd |
|
38 |
37
|
adantll |
|
39 |
|
eqcom |
|
40 |
39
|
biimpi |
|
41 |
40
|
adantl |
|
42 |
|
simplr |
|
43 |
3
|
adantr |
|
44 |
30
|
adantl |
|
45 |
43 44
|
ffvelrnd |
|
46 |
45
|
adantlr |
|
47 |
|
xneg11 |
|
48 |
42 46 47
|
syl2anc |
|
49 |
48
|
adantr |
|
50 |
41 49
|
mpbid |
|
51 |
3
|
ffund |
|
52 |
51 30
|
anim12i |
|
53 |
52
|
simpld |
|
54 |
3
|
fdmd |
|
55 |
54
|
eqcomd |
|
56 |
55
|
adantr |
|
57 |
44 56
|
eleqtrd |
|
58 |
53 57
|
jca |
|
59 |
|
elinel2 |
|
60 |
59
|
adantl |
|
61 |
|
funfvima |
|
62 |
58 60 61
|
sylc |
|
63 |
62
|
ad4ant13 |
|
64 |
50 63
|
eqeltrd |
|
65 |
38 64
|
syldan |
|
66 |
65
|
rexlimdva2 |
|
67 |
66
|
3adant3 |
|
68 |
29 67
|
syl3an3 |
|
69 |
28 68
|
mpd |
|
70 |
69
|
rabssdv |
|
71 |
|
ssrab2 |
|
72 |
71
|
a1i |
|
73 |
70 72
|
ssind |
|
74 |
5
|
a1i |
|
75 |
3
|
ffnd |
|
76 |
75
|
adantr |
|
77 |
|
elinel1 |
|
78 |
77
|
adantl |
|
79 |
|
fvelima2 |
|
80 |
76 78 79
|
syl2anc |
|
81 |
|
elinel2 |
|
82 |
|
eqcom |
|
83 |
82
|
biimpi |
|
84 |
83
|
adantl |
|
85 |
84
|
xnegeqd |
|
86 |
|
simpl |
|
87 |
84 86
|
eqeltrrd |
|
88 |
86 87 47
|
syl2anc |
|
89 |
85 88
|
mpbid |
|
90 |
89
|
xnegeqd |
|
91 |
90
|
ex |
|
92 |
91
|
reximdv |
|
93 |
81 92
|
syl |
|
94 |
93
|
adantl |
|
95 |
80 94
|
mpd |
|
96 |
|
xnegex |
|
97 |
|
elmptima |
|
98 |
96 97
|
ax-mp |
|
99 |
95 98
|
sylibr |
|
100 |
74
|
sselda |
|
101 |
100
|
xnegcld |
|
102 |
99 101
|
elind |
|
103 |
74 102
|
ssrabdv |
|
104 |
73 103
|
eqssd |
|
105 |
104
|
infeq1d |
|
106 |
105
|
xnegeqd |
|
107 |
17 106
|
eqtr2d |
|
108 |
107
|
mpteq2dv |
|
109 |
108
|
rneqd |
|
110 |
109
|
infeq1d |
|
111 |
110
|
xnegeqd |
|
112 |
11 111
|
eqtrd |
|
113 |
3 2
|
fexd |
|
114 |
|
eqid |
|
115 |
114
|
liminfval |
|
116 |
113 115
|
syl |
|
117 |
2
|
mptexd |
|
118 |
|
eqid |
|
119 |
118
|
limsupval |
|
120 |
117 119
|
syl |
|
121 |
120
|
xnegeqd |
|
122 |
112 116 121
|
3eqtr4d |
|
123 |
|
nfcv |
|
124 |
1 123
|
nffv |
|
125 |
124
|
nfxneg |
|
126 |
|
nfcv |
|
127 |
|
fveq2 |
|
128 |
127
|
xnegeqd |
|
129 |
125 126 128
|
cbvmpt |
|
130 |
129
|
fveq2i |
|
131 |
130
|
xnegeqi |
|
132 |
131
|
a1i |
|
133 |
122 132
|
eqtrd |
|