| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfvalxr.1 |
|
| 2 |
|
liminfvalxr.2 |
|
| 3 |
|
liminfvalxr.3 |
|
| 4 |
|
nftru |
|
| 5 |
|
inss2 |
|
| 6 |
|
infxrcl |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
7
|
a1i |
|
| 9 |
4 8
|
supminfxrrnmpt |
|
| 10 |
9
|
mptru |
|
| 11 |
10
|
a1i |
|
| 12 |
|
tru |
|
| 13 |
|
inss2 |
|
| 14 |
13
|
a1i |
|
| 15 |
14
|
supminfxr2 |
|
| 16 |
12 15
|
ax-mp |
|
| 17 |
16
|
a1i |
|
| 18 |
|
elinel1 |
|
| 19 |
|
nfmpt1 |
|
| 20 |
|
xnegex |
|
| 21 |
|
eqid |
|
| 22 |
20 21
|
fnmpti |
|
| 23 |
22
|
a1i |
|
| 24 |
23
|
adantr |
|
| 25 |
|
simpr |
|
| 26 |
19 24 25
|
fvelimad |
|
| 27 |
26
|
3adant2 |
|
| 28 |
18 27
|
syl3an3 |
|
| 29 |
|
elinel2 |
|
| 30 |
|
elinel1 |
|
| 31 |
20
|
a1i |
|
| 32 |
21
|
fvmpt2 |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
33
|
eqcomd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
37
|
adantll |
|
| 39 |
|
eqcom |
|
| 40 |
39
|
biimpi |
|
| 41 |
40
|
adantl |
|
| 42 |
|
simplr |
|
| 43 |
3
|
adantr |
|
| 44 |
30
|
adantl |
|
| 45 |
43 44
|
ffvelcdmd |
|
| 46 |
45
|
adantlr |
|
| 47 |
|
xneg11 |
|
| 48 |
42 46 47
|
syl2anc |
|
| 49 |
48
|
adantr |
|
| 50 |
41 49
|
mpbid |
|
| 51 |
3
|
ffund |
|
| 52 |
51 30
|
anim12i |
|
| 53 |
52
|
simpld |
|
| 54 |
3
|
fdmd |
|
| 55 |
54
|
eqcomd |
|
| 56 |
55
|
adantr |
|
| 57 |
44 56
|
eleqtrd |
|
| 58 |
53 57
|
jca |
|
| 59 |
|
elinel2 |
|
| 60 |
59
|
adantl |
|
| 61 |
|
funfvima |
|
| 62 |
58 60 61
|
sylc |
|
| 63 |
62
|
ad4ant13 |
|
| 64 |
50 63
|
eqeltrd |
|
| 65 |
38 64
|
syldan |
|
| 66 |
65
|
rexlimdva2 |
|
| 67 |
66
|
3adant3 |
|
| 68 |
29 67
|
syl3an3 |
|
| 69 |
28 68
|
mpd |
|
| 70 |
69
|
rabssdv |
|
| 71 |
|
ssrab2 |
|
| 72 |
71
|
a1i |
|
| 73 |
70 72
|
ssind |
|
| 74 |
5
|
a1i |
|
| 75 |
3
|
ffnd |
|
| 76 |
75
|
adantr |
|
| 77 |
|
elinel1 |
|
| 78 |
77
|
adantl |
|
| 79 |
|
fvelima2 |
|
| 80 |
76 78 79
|
syl2anc |
|
| 81 |
|
elinel2 |
|
| 82 |
|
eqcom |
|
| 83 |
82
|
biimpi |
|
| 84 |
83
|
adantl |
|
| 85 |
84
|
xnegeqd |
|
| 86 |
|
simpl |
|
| 87 |
84 86
|
eqeltrrd |
|
| 88 |
86 87 47
|
syl2anc |
|
| 89 |
85 88
|
mpbid |
|
| 90 |
89
|
xnegeqd |
|
| 91 |
90
|
ex |
|
| 92 |
91
|
reximdv |
|
| 93 |
81 92
|
syl |
|
| 94 |
93
|
adantl |
|
| 95 |
80 94
|
mpd |
|
| 96 |
|
xnegex |
|
| 97 |
|
elmptima |
|
| 98 |
96 97
|
ax-mp |
|
| 99 |
95 98
|
sylibr |
|
| 100 |
74
|
sselda |
|
| 101 |
100
|
xnegcld |
|
| 102 |
99 101
|
elind |
|
| 103 |
74 102
|
ssrabdv |
|
| 104 |
73 103
|
eqssd |
|
| 105 |
104
|
infeq1d |
|
| 106 |
105
|
xnegeqd |
|
| 107 |
17 106
|
eqtr2d |
|
| 108 |
107
|
mpteq2dv |
|
| 109 |
108
|
rneqd |
|
| 110 |
109
|
infeq1d |
|
| 111 |
110
|
xnegeqd |
|
| 112 |
11 111
|
eqtrd |
|
| 113 |
3 2
|
fexd |
|
| 114 |
|
eqid |
|
| 115 |
114
|
liminfval |
|
| 116 |
113 115
|
syl |
|
| 117 |
2
|
mptexd |
|
| 118 |
|
eqid |
|
| 119 |
118
|
limsupval |
|
| 120 |
117 119
|
syl |
|
| 121 |
120
|
xnegeqd |
|
| 122 |
112 116 121
|
3eqtr4d |
|
| 123 |
|
nfcv |
|
| 124 |
1 123
|
nffv |
|
| 125 |
124
|
nfxneg |
|
| 126 |
|
nfcv |
|
| 127 |
|
fveq2 |
|
| 128 |
127
|
xnegeqd |
|
| 129 |
125 126 128
|
cbvmpt |
|
| 130 |
129
|
fveq2i |
|
| 131 |
130
|
xnegeqi |
|
| 132 |
131
|
a1i |
|
| 133 |
122 132
|
eqtrd |
|