Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvalxr.1 |
|- F/_ x F |
2 |
|
liminfvalxr.2 |
|- ( ph -> A e. V ) |
3 |
|
liminfvalxr.3 |
|- ( ph -> F : A --> RR* ) |
4 |
|
nftru |
|- F/ k T. |
5 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
6 |
|
infxrcl |
|- ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
7 |
5 6
|
ax-mp |
|- inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
8 |
7
|
a1i |
|- ( ( T. /\ k e. RR ) -> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
9 |
4 8
|
supminfxrrnmpt |
|- ( T. -> sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = -e inf ( ran ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
10 |
9
|
mptru |
|- sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = -e inf ( ran ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
11 |
10
|
a1i |
|- ( ph -> sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = -e inf ( ran ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
12 |
|
tru |
|- T. |
13 |
|
inss2 |
|- ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
14 |
13
|
a1i |
|- ( T. -> ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
15 |
14
|
supminfxr2 |
|- ( T. -> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = -e inf ( { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } , RR* , < ) ) |
16 |
12 15
|
ax-mp |
|- sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = -e inf ( { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } , RR* , < ) |
17 |
16
|
a1i |
|- ( ph -> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = -e inf ( { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } , RR* , < ) ) |
18 |
|
elinel1 |
|- ( -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) -> -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) |
19 |
|
nfmpt1 |
|- F/_ y ( y e. A |-> -e ( F ` y ) ) |
20 |
|
xnegex |
|- -e ( F ` y ) e. _V |
21 |
|
eqid |
|- ( y e. A |-> -e ( F ` y ) ) = ( y e. A |-> -e ( F ` y ) ) |
22 |
20 21
|
fnmpti |
|- ( y e. A |-> -e ( F ` y ) ) Fn A |
23 |
22
|
a1i |
|- ( ph -> ( y e. A |-> -e ( F ` y ) ) Fn A ) |
24 |
23
|
adantr |
|- ( ( ph /\ -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) -> ( y e. A |-> -e ( F ` y ) ) Fn A ) |
25 |
|
simpr |
|- ( ( ph /\ -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) -> -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) |
26 |
19 24 25
|
fvelimad |
|- ( ( ph /\ -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) -> E. y e. ( A i^i ( k [,) +oo ) ) ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) |
27 |
26
|
3adant2 |
|- ( ( ph /\ z e. RR* /\ -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) -> E. y e. ( A i^i ( k [,) +oo ) ) ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) |
28 |
18 27
|
syl3an3 |
|- ( ( ph /\ z e. RR* /\ -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) ) -> E. y e. ( A i^i ( k [,) +oo ) ) ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) |
29 |
|
elinel2 |
|- ( -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) -> -e z e. RR* ) |
30 |
|
elinel1 |
|- ( y e. ( A i^i ( k [,) +oo ) ) -> y e. A ) |
31 |
20
|
a1i |
|- ( y e. ( A i^i ( k [,) +oo ) ) -> -e ( F ` y ) e. _V ) |
32 |
21
|
fvmpt2 |
|- ( ( y e. A /\ -e ( F ` y ) e. _V ) -> ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e ( F ` y ) ) |
33 |
30 31 32
|
syl2anc |
|- ( y e. ( A i^i ( k [,) +oo ) ) -> ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e ( F ` y ) ) |
34 |
33
|
eqcomd |
|- ( y e. ( A i^i ( k [,) +oo ) ) -> -e ( F ` y ) = ( ( y e. A |-> -e ( F ` y ) ) ` y ) ) |
35 |
34
|
adantr |
|- ( ( y e. ( A i^i ( k [,) +oo ) ) /\ ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) -> -e ( F ` y ) = ( ( y e. A |-> -e ( F ` y ) ) ` y ) ) |
36 |
|
simpr |
|- ( ( y e. ( A i^i ( k [,) +oo ) ) /\ ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) -> ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) |
37 |
35 36
|
eqtrd |
|- ( ( y e. ( A i^i ( k [,) +oo ) ) /\ ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) -> -e ( F ` y ) = -e z ) |
38 |
37
|
adantll |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) -> -e ( F ` y ) = -e z ) |
39 |
|
eqcom |
|- ( -e ( F ` y ) = -e z <-> -e z = -e ( F ` y ) ) |
40 |
39
|
biimpi |
|- ( -e ( F ` y ) = -e z -> -e z = -e ( F ` y ) ) |
41 |
40
|
adantl |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ -e ( F ` y ) = -e z ) -> -e z = -e ( F ` y ) ) |
42 |
|
simplr |
|- ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) -> z e. RR* ) |
43 |
3
|
adantr |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> F : A --> RR* ) |
44 |
30
|
adantl |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> y e. A ) |
45 |
43 44
|
ffvelrnd |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> ( F ` y ) e. RR* ) |
46 |
45
|
adantlr |
|- ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) -> ( F ` y ) e. RR* ) |
47 |
|
xneg11 |
|- ( ( z e. RR* /\ ( F ` y ) e. RR* ) -> ( -e z = -e ( F ` y ) <-> z = ( F ` y ) ) ) |
48 |
42 46 47
|
syl2anc |
|- ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) -> ( -e z = -e ( F ` y ) <-> z = ( F ` y ) ) ) |
49 |
48
|
adantr |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ -e ( F ` y ) = -e z ) -> ( -e z = -e ( F ` y ) <-> z = ( F ` y ) ) ) |
50 |
41 49
|
mpbid |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ -e ( F ` y ) = -e z ) -> z = ( F ` y ) ) |
51 |
3
|
ffund |
|- ( ph -> Fun F ) |
52 |
51 30
|
anim12i |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> ( Fun F /\ y e. A ) ) |
53 |
52
|
simpld |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> Fun F ) |
54 |
3
|
fdmd |
|- ( ph -> dom F = A ) |
55 |
54
|
eqcomd |
|- ( ph -> A = dom F ) |
56 |
55
|
adantr |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> A = dom F ) |
57 |
44 56
|
eleqtrd |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> y e. dom F ) |
58 |
53 57
|
jca |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> ( Fun F /\ y e. dom F ) ) |
59 |
|
elinel2 |
|- ( y e. ( A i^i ( k [,) +oo ) ) -> y e. ( k [,) +oo ) ) |
60 |
59
|
adantl |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> y e. ( k [,) +oo ) ) |
61 |
|
funfvima |
|- ( ( Fun F /\ y e. dom F ) -> ( y e. ( k [,) +oo ) -> ( F ` y ) e. ( F " ( k [,) +oo ) ) ) ) |
62 |
58 60 61
|
sylc |
|- ( ( ph /\ y e. ( A i^i ( k [,) +oo ) ) ) -> ( F ` y ) e. ( F " ( k [,) +oo ) ) ) |
63 |
62
|
ad4ant13 |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ -e ( F ` y ) = -e z ) -> ( F ` y ) e. ( F " ( k [,) +oo ) ) ) |
64 |
50 63
|
eqeltrd |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ -e ( F ` y ) = -e z ) -> z e. ( F " ( k [,) +oo ) ) ) |
65 |
38 64
|
syldan |
|- ( ( ( ( ph /\ z e. RR* ) /\ y e. ( A i^i ( k [,) +oo ) ) ) /\ ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z ) -> z e. ( F " ( k [,) +oo ) ) ) |
66 |
65
|
rexlimdva2 |
|- ( ( ph /\ z e. RR* ) -> ( E. y e. ( A i^i ( k [,) +oo ) ) ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z -> z e. ( F " ( k [,) +oo ) ) ) ) |
67 |
66
|
3adant3 |
|- ( ( ph /\ z e. RR* /\ -e z e. RR* ) -> ( E. y e. ( A i^i ( k [,) +oo ) ) ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z -> z e. ( F " ( k [,) +oo ) ) ) ) |
68 |
29 67
|
syl3an3 |
|- ( ( ph /\ z e. RR* /\ -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) ) -> ( E. y e. ( A i^i ( k [,) +oo ) ) ( ( y e. A |-> -e ( F ` y ) ) ` y ) = -e z -> z e. ( F " ( k [,) +oo ) ) ) ) |
69 |
28 68
|
mpd |
|- ( ( ph /\ z e. RR* /\ -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) ) -> z e. ( F " ( k [,) +oo ) ) ) |
70 |
69
|
rabssdv |
|- ( ph -> { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } C_ ( F " ( k [,) +oo ) ) ) |
71 |
|
ssrab2 |
|- { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } C_ RR* |
72 |
71
|
a1i |
|- ( ph -> { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } C_ RR* ) |
73 |
70 72
|
ssind |
|- ( ph -> { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } C_ ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
74 |
5
|
a1i |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
75 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
76 |
75
|
adantr |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> F Fn A ) |
77 |
|
elinel1 |
|- ( z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> z e. ( F " ( k [,) +oo ) ) ) |
78 |
77
|
adantl |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> z e. ( F " ( k [,) +oo ) ) ) |
79 |
|
fvelima2 |
|- ( ( F Fn A /\ z e. ( F " ( k [,) +oo ) ) ) -> E. y e. ( A i^i ( k [,) +oo ) ) ( F ` y ) = z ) |
80 |
76 78 79
|
syl2anc |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> E. y e. ( A i^i ( k [,) +oo ) ) ( F ` y ) = z ) |
81 |
|
elinel2 |
|- ( z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> z e. RR* ) |
82 |
|
eqcom |
|- ( ( F ` y ) = z <-> z = ( F ` y ) ) |
83 |
82
|
biimpi |
|- ( ( F ` y ) = z -> z = ( F ` y ) ) |
84 |
83
|
adantl |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> z = ( F ` y ) ) |
85 |
84
|
xnegeqd |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> -e z = -e ( F ` y ) ) |
86 |
|
simpl |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> z e. RR* ) |
87 |
84 86
|
eqeltrrd |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> ( F ` y ) e. RR* ) |
88 |
86 87 47
|
syl2anc |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> ( -e z = -e ( F ` y ) <-> z = ( F ` y ) ) ) |
89 |
85 88
|
mpbid |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> z = ( F ` y ) ) |
90 |
89
|
xnegeqd |
|- ( ( z e. RR* /\ ( F ` y ) = z ) -> -e z = -e ( F ` y ) ) |
91 |
90
|
ex |
|- ( z e. RR* -> ( ( F ` y ) = z -> -e z = -e ( F ` y ) ) ) |
92 |
91
|
reximdv |
|- ( z e. RR* -> ( E. y e. ( A i^i ( k [,) +oo ) ) ( F ` y ) = z -> E. y e. ( A i^i ( k [,) +oo ) ) -e z = -e ( F ` y ) ) ) |
93 |
81 92
|
syl |
|- ( z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) -> ( E. y e. ( A i^i ( k [,) +oo ) ) ( F ` y ) = z -> E. y e. ( A i^i ( k [,) +oo ) ) -e z = -e ( F ` y ) ) ) |
94 |
93
|
adantl |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> ( E. y e. ( A i^i ( k [,) +oo ) ) ( F ` y ) = z -> E. y e. ( A i^i ( k [,) +oo ) ) -e z = -e ( F ` y ) ) ) |
95 |
80 94
|
mpd |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> E. y e. ( A i^i ( k [,) +oo ) ) -e z = -e ( F ` y ) ) |
96 |
|
xnegex |
|- -e z e. _V |
97 |
|
elmptima |
|- ( -e z e. _V -> ( -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) <-> E. y e. ( A i^i ( k [,) +oo ) ) -e z = -e ( F ` y ) ) ) |
98 |
96 97
|
ax-mp |
|- ( -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) <-> E. y e. ( A i^i ( k [,) +oo ) ) -e z = -e ( F ` y ) ) |
99 |
95 98
|
sylibr |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> -e z e. ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) ) |
100 |
74
|
sselda |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> z e. RR* ) |
101 |
100
|
xnegcld |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> -e z e. RR* ) |
102 |
99 101
|
elind |
|- ( ( ph /\ z e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) -> -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) ) |
103 |
74 102
|
ssrabdv |
|- ( ph -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } ) |
104 |
73 103
|
eqssd |
|- ( ph -> { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
105 |
104
|
infeq1d |
|- ( ph -> inf ( { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } , RR* , < ) = inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
106 |
105
|
xnegeqd |
|- ( ph -> -e inf ( { z e. RR* | -e z e. ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) } , RR* , < ) = -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
107 |
17 106
|
eqtr2d |
|- ( ph -> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
108 |
107
|
mpteq2dv |
|- ( ph -> ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
109 |
108
|
rneqd |
|- ( ph -> ran ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
110 |
109
|
infeq1d |
|- ( ph -> inf ( ran ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = inf ( ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
111 |
110
|
xnegeqd |
|- ( ph -> -e inf ( ran ( k e. RR |-> -e inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = -e inf ( ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
112 |
11 111
|
eqtrd |
|- ( ph -> sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = -e inf ( ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
113 |
3 2
|
fexd |
|- ( ph -> F e. _V ) |
114 |
|
eqid |
|- ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
115 |
114
|
liminfval |
|- ( F e. _V -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
116 |
113 115
|
syl |
|- ( ph -> ( liminf ` F ) = sup ( ran ( k e. RR |-> inf ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
117 |
2
|
mptexd |
|- ( ph -> ( y e. A |-> -e ( F ` y ) ) e. _V ) |
118 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
119 |
118
|
limsupval |
|- ( ( y e. A |-> -e ( F ` y ) ) e. _V -> ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
120 |
117 119
|
syl |
|- ( ph -> ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
121 |
120
|
xnegeqd |
|- ( ph -> -e ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) = -e inf ( ran ( k e. RR |-> sup ( ( ( ( y e. A |-> -e ( F ` y ) ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
122 |
112 116 121
|
3eqtr4d |
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) ) |
123 |
|
nfcv |
|- F/_ x y |
124 |
1 123
|
nffv |
|- F/_ x ( F ` y ) |
125 |
124
|
nfxneg |
|- F/_ x -e ( F ` y ) |
126 |
|
nfcv |
|- F/_ y -e ( F ` x ) |
127 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
128 |
127
|
xnegeqd |
|- ( y = x -> -e ( F ` y ) = -e ( F ` x ) ) |
129 |
125 126 128
|
cbvmpt |
|- ( y e. A |-> -e ( F ` y ) ) = ( x e. A |-> -e ( F ` x ) ) |
130 |
129
|
fveq2i |
|- ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) = ( limsup ` ( x e. A |-> -e ( F ` x ) ) ) |
131 |
130
|
xnegeqi |
|- -e ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) = -e ( limsup ` ( x e. A |-> -e ( F ` x ) ) ) |
132 |
131
|
a1i |
|- ( ph -> -e ( limsup ` ( y e. A |-> -e ( F ` y ) ) ) = -e ( limsup ` ( x e. A |-> -e ( F ` x ) ) ) ) |
133 |
122 132
|
eqtrd |
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( x e. A |-> -e ( F ` x ) ) ) ) |