Description: An example where the liminf is strictly smaller than the limsup . (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | liminfltlimsupex.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 1 ) ) | |
| Assertion | liminfltlimsupex | ⊢ ( lim inf ‘ 𝐹 ) < ( lim sup ‘ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfltlimsupex.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 1 ) ) | |
| 2 | 0lt1 | ⊢ 0 < 1 | |
| 3 | 1 | liminf10ex | ⊢ ( lim inf ‘ 𝐹 ) = 0 |
| 4 | 1 | limsup10ex | ⊢ ( lim sup ‘ 𝐹 ) = 1 |
| 5 | 3 4 | breq12i | ⊢ ( ( lim inf ‘ 𝐹 ) < ( lim sup ‘ 𝐹 ) ↔ 0 < 1 ) |
| 6 | 2 5 | mpbir | ⊢ ( lim inf ‘ 𝐹 ) < ( lim sup ‘ 𝐹 ) |