Metamath Proof Explorer


Theorem liminflelimsupcex

Description: A counterexample for liminflelimsup , showing that the second hypothesis is needed. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminflelimsupcex lim sup < lim inf

Proof

Step Hyp Ref Expression
1 mnfltpnf −∞ < +∞
2 limsup0 lim sup = −∞
3 liminf0 lim inf = +∞
4 2 3 breq12i lim sup < lim inf −∞ < +∞
5 1 4 mpbir lim sup < lim inf