Metamath Proof Explorer


Theorem liminf0

Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminf0
|- ( liminf ` (/) ) = +oo

Proof

Step Hyp Ref Expression
1 nftru
 |-  F/ x T.
2 0ex
 |-  (/) e. _V
3 2 a1i
 |-  ( T. -> (/) e. _V )
4 0red
 |-  ( T. -> 0 e. RR )
5 noel
 |-  -. x e. (/)
6 elinel1
 |-  ( x e. ( (/) i^i ( 0 [,) +oo ) ) -> x e. (/) )
7 6 con3i
 |-  ( -. x e. (/) -> -. x e. ( (/) i^i ( 0 [,) +oo ) ) )
8 5 7 ax-mp
 |-  -. x e. ( (/) i^i ( 0 [,) +oo ) )
9 pm2.21
 |-  ( -. x e. ( (/) i^i ( 0 [,) +oo ) ) -> ( x e. ( (/) i^i ( 0 [,) +oo ) ) -> ( (/) ` x ) e. RR* ) )
10 8 9 ax-mp
 |-  ( x e. ( (/) i^i ( 0 [,) +oo ) ) -> ( (/) ` x ) e. RR* )
11 10 adantl
 |-  ( ( T. /\ x e. ( (/) i^i ( 0 [,) +oo ) ) ) -> ( (/) ` x ) e. RR* )
12 1 3 4 11 liminfval3
 |-  ( T. -> ( liminf ` ( x e. (/) |-> ( (/) ` x ) ) ) = -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) )
13 12 mptru
 |-  ( liminf ` ( x e. (/) |-> ( (/) ` x ) ) ) = -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) )
14 mpt0
 |-  ( x e. (/) |-> ( (/) ` x ) ) = (/)
15 14 fveq2i
 |-  ( liminf ` ( x e. (/) |-> ( (/) ` x ) ) ) = ( liminf ` (/) )
16 mpt0
 |-  ( x e. (/) |-> -e ( (/) ` x ) ) = (/)
17 16 fveq2i
 |-  ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = ( limsup ` (/) )
18 limsup0
 |-  ( limsup ` (/) ) = -oo
19 17 18 eqtri
 |-  ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = -oo
20 19 xnegeqi
 |-  -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = -e -oo
21 xnegmnf
 |-  -e -oo = +oo
22 20 21 eqtri
 |-  -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = +oo
23 13 15 22 3eqtr3i
 |-  ( liminf ` (/) ) = +oo