Step |
Hyp |
Ref |
Expression |
1 |
|
nftru |
|- F/ x T. |
2 |
|
0ex |
|- (/) e. _V |
3 |
2
|
a1i |
|- ( T. -> (/) e. _V ) |
4 |
|
0red |
|- ( T. -> 0 e. RR ) |
5 |
|
noel |
|- -. x e. (/) |
6 |
|
elinel1 |
|- ( x e. ( (/) i^i ( 0 [,) +oo ) ) -> x e. (/) ) |
7 |
6
|
con3i |
|- ( -. x e. (/) -> -. x e. ( (/) i^i ( 0 [,) +oo ) ) ) |
8 |
5 7
|
ax-mp |
|- -. x e. ( (/) i^i ( 0 [,) +oo ) ) |
9 |
|
pm2.21 |
|- ( -. x e. ( (/) i^i ( 0 [,) +oo ) ) -> ( x e. ( (/) i^i ( 0 [,) +oo ) ) -> ( (/) ` x ) e. RR* ) ) |
10 |
8 9
|
ax-mp |
|- ( x e. ( (/) i^i ( 0 [,) +oo ) ) -> ( (/) ` x ) e. RR* ) |
11 |
10
|
adantl |
|- ( ( T. /\ x e. ( (/) i^i ( 0 [,) +oo ) ) ) -> ( (/) ` x ) e. RR* ) |
12 |
1 3 4 11
|
liminfval3 |
|- ( T. -> ( liminf ` ( x e. (/) |-> ( (/) ` x ) ) ) = -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) ) |
13 |
12
|
mptru |
|- ( liminf ` ( x e. (/) |-> ( (/) ` x ) ) ) = -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) |
14 |
|
mpt0 |
|- ( x e. (/) |-> ( (/) ` x ) ) = (/) |
15 |
14
|
fveq2i |
|- ( liminf ` ( x e. (/) |-> ( (/) ` x ) ) ) = ( liminf ` (/) ) |
16 |
|
mpt0 |
|- ( x e. (/) |-> -e ( (/) ` x ) ) = (/) |
17 |
16
|
fveq2i |
|- ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = ( limsup ` (/) ) |
18 |
|
limsup0 |
|- ( limsup ` (/) ) = -oo |
19 |
17 18
|
eqtri |
|- ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = -oo |
20 |
19
|
xnegeqi |
|- -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = -e -oo |
21 |
|
xnegmnf |
|- -e -oo = +oo |
22 |
20 21
|
eqtri |
|- -e ( limsup ` ( x e. (/) |-> -e ( (/) ` x ) ) ) = +oo |
23 |
13 15 22
|
3eqtr3i |
|- ( liminf ` (/) ) = +oo |