| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupval4.x |
|- F/ x ph |
| 2 |
|
limsupval4.a |
|- ( ph -> A e. V ) |
| 3 |
|
limsupval4.m |
|- ( ph -> M e. RR ) |
| 4 |
|
limsupval4.b |
|- ( ( ph /\ x e. ( A i^i ( M [,) +oo ) ) ) -> B e. RR* ) |
| 5 |
|
ovex |
|- ( M [,) +oo ) e. _V |
| 6 |
5
|
inex2 |
|- ( A i^i ( M [,) +oo ) ) e. _V |
| 7 |
6
|
mptex |
|- ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) e. _V |
| 8 |
|
limsupcl |
|- ( ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) e. _V -> ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) e. RR* ) |
| 9 |
7 8
|
ax-mp |
|- ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) e. RR* |
| 10 |
9
|
a1i |
|- ( ph -> ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) e. RR* ) |
| 11 |
10
|
xnegnegd |
|- ( ph -> -e -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) = -e -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 13 |
|
eqid |
|- ( M [,) +oo ) = ( M [,) +oo ) |
| 14 |
2 3 13
|
limsupresicompt |
|- ( ph -> ( limsup ` ( x e. A |-> B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 15 |
4
|
xnegcld |
|- ( ( ph /\ x e. ( A i^i ( M [,) +oo ) ) ) -> -e B e. RR* ) |
| 16 |
1 2 3 15
|
liminfval3 |
|- ( ph -> ( liminf ` ( x e. A |-> -e B ) ) = -e ( limsup ` ( x e. A |-> -e -e B ) ) ) |
| 17 |
2 3 13
|
limsupresicompt |
|- ( ph -> ( limsup ` ( x e. A |-> -e -e B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -e -e B ) ) ) |
| 18 |
4
|
xnegnegd |
|- ( ( ph /\ x e. ( A i^i ( M [,) +oo ) ) ) -> -e -e B = B ) |
| 19 |
1 18
|
mpteq2da |
|- ( ph -> ( x e. ( A i^i ( M [,) +oo ) ) |-> -e -e B ) = ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -e -e B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 21 |
17 20
|
eqtrd |
|- ( ph -> ( limsup ` ( x e. A |-> -e -e B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 22 |
21
|
xnegeqd |
|- ( ph -> -e ( limsup ` ( x e. A |-> -e -e B ) ) = -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 23 |
16 22
|
eqtrd |
|- ( ph -> ( liminf ` ( x e. A |-> -e B ) ) = -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 24 |
23
|
xnegeqd |
|- ( ph -> -e ( liminf ` ( x e. A |-> -e B ) ) = -e -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
| 25 |
12 14 24
|
3eqtr4d |
|- ( ph -> ( limsup ` ( x e. A |-> B ) ) = -e ( liminf ` ( x e. A |-> -e B ) ) ) |