Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvaluz2.k |
|- F/ k ph |
2 |
|
liminfvaluz2.m |
|- ( ph -> M e. ZZ ) |
3 |
|
liminfvaluz2.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
liminfvaluz2.b |
|- ( ( ph /\ k e. Z ) -> B e. RR ) |
5 |
4
|
rexrd |
|- ( ( ph /\ k e. Z ) -> B e. RR* ) |
6 |
1 2 3 5
|
liminfvaluz |
|- ( ph -> ( liminf ` ( k e. Z |-> B ) ) = -e ( limsup ` ( k e. Z |-> -e B ) ) ) |
7 |
4
|
rexnegd |
|- ( ( ph /\ k e. Z ) -> -e B = -u B ) |
8 |
1 7
|
mpteq2da |
|- ( ph -> ( k e. Z |-> -e B ) = ( k e. Z |-> -u B ) ) |
9 |
8
|
fveq2d |
|- ( ph -> ( limsup ` ( k e. Z |-> -e B ) ) = ( limsup ` ( k e. Z |-> -u B ) ) ) |
10 |
9
|
xnegeqd |
|- ( ph -> -e ( limsup ` ( k e. Z |-> -e B ) ) = -e ( limsup ` ( k e. Z |-> -u B ) ) ) |
11 |
6 10
|
eqtrd |
|- ( ph -> ( liminf ` ( k e. Z |-> B ) ) = -e ( limsup ` ( k e. Z |-> -u B ) ) ) |