| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfvaluz.k |
|- F/ k ph |
| 2 |
|
liminfvaluz.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
liminfvaluz.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
liminfvaluz.b |
|- ( ( ph /\ k e. Z ) -> B e. RR* ) |
| 5 |
3
|
fvexi |
|- Z e. _V |
| 6 |
5
|
a1i |
|- ( ph -> Z e. _V ) |
| 7 |
2
|
zred |
|- ( ph -> M e. RR ) |
| 8 |
|
simpr |
|- ( ( ph /\ k e. ( Z i^i ( M [,) +oo ) ) ) -> k e. ( Z i^i ( M [,) +oo ) ) ) |
| 9 |
2 3
|
uzinico3 |
|- ( ph -> Z = ( Z i^i ( M [,) +oo ) ) ) |
| 10 |
9
|
eqcomd |
|- ( ph -> ( Z i^i ( M [,) +oo ) ) = Z ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ k e. ( Z i^i ( M [,) +oo ) ) ) -> ( Z i^i ( M [,) +oo ) ) = Z ) |
| 12 |
8 11
|
eleqtrd |
|- ( ( ph /\ k e. ( Z i^i ( M [,) +oo ) ) ) -> k e. Z ) |
| 13 |
12 4
|
syldan |
|- ( ( ph /\ k e. ( Z i^i ( M [,) +oo ) ) ) -> B e. RR* ) |
| 14 |
1 6 7 13
|
liminfval3 |
|- ( ph -> ( liminf ` ( k e. Z |-> B ) ) = -e ( limsup ` ( k e. Z |-> -e B ) ) ) |