Metamath Proof Explorer


Theorem uzinico3

Description: An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzinico3.1
|- ( ph -> M e. ZZ )
uzinico3.2
|- Z = ( ZZ>= ` M )
Assertion uzinico3
|- ( ph -> Z = ( Z i^i ( M [,) +oo ) ) )

Proof

Step Hyp Ref Expression
1 uzinico3.1
 |-  ( ph -> M e. ZZ )
2 uzinico3.2
 |-  Z = ( ZZ>= ` M )
3 1 uzidd
 |-  ( ph -> M e. ( ZZ>= ` M ) )
4 3 uzinico2
 |-  ( ph -> ( ZZ>= ` M ) = ( ( ZZ>= ` M ) i^i ( M [,) +oo ) ) )
5 2 a1i
 |-  ( ph -> Z = ( ZZ>= ` M ) )
6 5 ineq1d
 |-  ( ph -> ( Z i^i ( M [,) +oo ) ) = ( ( ZZ>= ` M ) i^i ( M [,) +oo ) ) )
7 5 6 eqeq12d
 |-  ( ph -> ( Z = ( Z i^i ( M [,) +oo ) ) <-> ( ZZ>= ` M ) = ( ( ZZ>= ` M ) i^i ( M [,) +oo ) ) ) )
8 4 7 mpbird
 |-  ( ph -> Z = ( Z i^i ( M [,) +oo ) ) )