Metamath Proof Explorer


Theorem uzinico3

Description: An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzinico3.1 ( 𝜑𝑀 ∈ ℤ )
uzinico3.2 𝑍 = ( ℤ𝑀 )
Assertion uzinico3 ( 𝜑𝑍 = ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) )

Proof

Step Hyp Ref Expression
1 uzinico3.1 ( 𝜑𝑀 ∈ ℤ )
2 uzinico3.2 𝑍 = ( ℤ𝑀 )
3 1 uzidd ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
4 3 uzinico2 ( 𝜑 → ( ℤ𝑀 ) = ( ( ℤ𝑀 ) ∩ ( 𝑀 [,) +∞ ) ) )
5 2 a1i ( 𝜑𝑍 = ( ℤ𝑀 ) )
6 5 ineq1d ( 𝜑 → ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) = ( ( ℤ𝑀 ) ∩ ( 𝑀 [,) +∞ ) ) )
7 5 6 eqeq12d ( 𝜑 → ( 𝑍 = ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ↔ ( ℤ𝑀 ) = ( ( ℤ𝑀 ) ∩ ( 𝑀 [,) +∞ ) ) ) )
8 4 7 mpbird ( 𝜑𝑍 = ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) )