Description: Alternate definition of liminf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupval4.x | |
|
limsupval4.a | |
||
limsupval4.m | |
||
limsupval4.b | |
||
Assertion | limsupval4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval4.x | |
|
2 | limsupval4.a | |
|
3 | limsupval4.m | |
|
4 | limsupval4.b | |
|
5 | ovex | |
|
6 | 5 | inex2 | |
7 | 6 | mptex | |
8 | limsupcl | |
|
9 | 7 8 | ax-mp | |
10 | 9 | a1i | |
11 | 10 | xnegnegd | |
12 | 11 | eqcomd | |
13 | eqid | |
|
14 | 2 3 13 | limsupresicompt | |
15 | 4 | xnegcld | |
16 | 1 2 3 15 | liminfval3 | |
17 | 2 3 13 | limsupresicompt | |
18 | 4 | xnegnegd | |
19 | 1 18 | mpteq2da | |
20 | 19 | fveq2d | |
21 | 17 20 | eqtrd | |
22 | 21 | xnegeqd | |
23 | 16 22 | eqtrd | |
24 | 23 | xnegeqd | |
25 | 12 14 24 | 3eqtr4d | |