Metamath Proof Explorer


Theorem limsupval4

Description: Alternate definition of liminf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupval4.x xφ
limsupval4.a φAV
limsupval4.m φM
limsupval4.b φxAM+∞B*
Assertion limsupval4 φlim supxAB=lim infxAB

Proof

Step Hyp Ref Expression
1 limsupval4.x xφ
2 limsupval4.a φAV
3 limsupval4.m φM
4 limsupval4.b φxAM+∞B*
5 ovex M+∞V
6 5 inex2 AM+∞V
7 6 mptex xAM+∞BV
8 limsupcl xAM+∞BVlim supxAM+∞B*
9 7 8 ax-mp lim supxAM+∞B*
10 9 a1i φlim supxAM+∞B*
11 10 xnegnegd φlim supxAM+∞B=lim supxAM+∞B
12 11 eqcomd φlim supxAM+∞B=lim supxAM+∞B
13 eqid M+∞=M+∞
14 2 3 13 limsupresicompt φlim supxAB=lim supxAM+∞B
15 4 xnegcld φxAM+∞B*
16 1 2 3 15 liminfval3 φlim infxAB=lim supxAB
17 2 3 13 limsupresicompt φlim supxAB=lim supxAM+∞B
18 4 xnegnegd φxAM+∞B=B
19 1 18 mpteq2da φxAM+∞B=xAM+∞B
20 19 fveq2d φlim supxAM+∞B=lim supxAM+∞B
21 17 20 eqtrd φlim supxAB=lim supxAM+∞B
22 21 xnegeqd φlim supxAB=lim supxAM+∞B
23 16 22 eqtrd φlim infxAB=lim supxAM+∞B
24 23 xnegeqd φlim infxAB=lim supxAM+∞B
25 12 14 24 3eqtr4d φlim supxAB=lim infxAB