Metamath Proof Explorer


Theorem limsupval4

Description: Alternate definition of liminf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupval4.x x φ
limsupval4.a φ A V
limsupval4.m φ M
limsupval4.b φ x A M +∞ B *
Assertion limsupval4 φ lim sup x A B = lim inf x A B

Proof

Step Hyp Ref Expression
1 limsupval4.x x φ
2 limsupval4.a φ A V
3 limsupval4.m φ M
4 limsupval4.b φ x A M +∞ B *
5 ovex M +∞ V
6 5 inex2 A M +∞ V
7 6 mptex x A M +∞ B V
8 limsupcl x A M +∞ B V lim sup x A M +∞ B *
9 7 8 ax-mp lim sup x A M +∞ B *
10 9 a1i φ lim sup x A M +∞ B *
11 10 xnegnegd φ lim sup x A M +∞ B = lim sup x A M +∞ B
12 11 eqcomd φ lim sup x A M +∞ B = lim sup x A M +∞ B
13 eqid M +∞ = M +∞
14 2 3 13 limsupresicompt φ lim sup x A B = lim sup x A M +∞ B
15 4 xnegcld φ x A M +∞ B *
16 1 2 3 15 liminfval3 φ lim inf x A B = lim sup x A B
17 2 3 13 limsupresicompt φ lim sup x A B = lim sup x A M +∞ B
18 4 xnegnegd φ x A M +∞ B = B
19 1 18 mpteq2da φ x A M +∞ B = x A M +∞ B
20 19 fveq2d φ lim sup x A M +∞ B = lim sup x A M +∞ B
21 17 20 eqtrd φ lim sup x A B = lim sup x A M +∞ B
22 21 xnegeqd φ lim sup x A B = lim sup x A M +∞ B
23 16 22 eqtrd φ lim inf x A B = lim sup x A M +∞ B
24 23 xnegeqd φ lim inf x A B = lim sup x A M +∞ B
25 12 14 24 3eqtr4d φ lim sup x A B = lim inf x A B