Metamath Proof Explorer


Theorem liminfval3

Description: Alternate definition of liminf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval3.x x φ
liminfval3.a φ A V
liminfval3.m φ M
liminfval3.b φ x A M +∞ B *
Assertion liminfval3 φ lim inf x A B = lim sup x A B

Proof

Step Hyp Ref Expression
1 liminfval3.x x φ
2 liminfval3.a φ A V
3 liminfval3.m φ M
4 liminfval3.b φ x A M +∞ B *
5 inss1 A M +∞ A
6 5 a1i φ A M +∞ A
7 2 6 ssexd φ A M +∞ V
8 1 7 4 liminfvalxrmpt φ lim inf x A M +∞ B = lim sup x A M +∞ B
9 eqid M +∞ = M +∞
10 3 9 2 liminfresicompt φ lim inf x A M +∞ B = lim inf x A B
11 10 eqcomd φ lim inf x A B = lim inf x A M +∞ B
12 2 3 9 limsupresicompt φ lim sup x A B = lim sup x A M +∞ B
13 12 xnegeqd φ lim sup x A B = lim sup x A M +∞ B
14 8 11 13 3eqtr4d φ lim inf x A B = lim sup x A B