Metamath Proof Explorer


Theorem liminfvaluz3

Description: Alternate definition of liminf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz3.1 𝑘 𝜑
liminfvaluz3.2 𝑘 𝐹
liminfvaluz3.3 ( 𝜑𝑀 ∈ ℤ )
liminfvaluz3.4 𝑍 = ( ℤ𝑀 )
liminfvaluz3.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion liminfvaluz3 ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ -𝑒 ( 𝐹𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 liminfvaluz3.1 𝑘 𝜑
2 liminfvaluz3.2 𝑘 𝐹
3 liminfvaluz3.3 ( 𝜑𝑀 ∈ ℤ )
4 liminfvaluz3.4 𝑍 = ( ℤ𝑀 )
5 liminfvaluz3.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
6 nfcv 𝑘 𝑍
7 6 2 5 feqmptdf ( 𝜑𝐹 = ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) )
8 7 fveq2d ( 𝜑 → ( lim inf ‘ 𝐹 ) = ( lim inf ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) )
9 5 ffvelrnda ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ* )
10 1 3 4 9 liminfvaluz ( 𝜑 → ( lim inf ‘ ( 𝑘𝑍 ↦ ( 𝐹𝑘 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ -𝑒 ( 𝐹𝑘 ) ) ) )
11 8 10 eqtrd ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ -𝑒 ( 𝐹𝑘 ) ) ) )