Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
liminfresuz2
Metamath Proof Explorer
Description: If the domain of a function is a subset of the integers, the inferior
limit doesn't change when the function is restricted to an upper set of
integers. (Contributed by Glauco Siliprandi , 2-Jan-2022)
Ref
Expression
Hypotheses
liminfresuz2.1
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
liminfresuz2.2
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
liminfresuz2.3
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 )
liminfresuz2.4
⊢ ( 𝜑 → dom 𝐹 ⊆ ℤ )
Assertion
liminfresuz2
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ 𝑍 ) ) = ( lim inf ‘ 𝐹 ) )
Proof
Step
Hyp
Ref
Expression
1
liminfresuz2.1
⊢ ( 𝜑 → 𝑀 ∈ ℤ )
2
liminfresuz2.2
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 )
3
liminfresuz2.3
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 )
4
liminfresuz2.4
⊢ ( 𝜑 → dom 𝐹 ⊆ ℤ )
5
dmresss
⊢ dom ( 𝐹 ↾ ℝ ) ⊆ dom 𝐹
6
5
a1i
⊢ ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ dom 𝐹 )
7
6 4
sstrd
⊢ ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ ℤ )
8
1 2 3 7
liminfresuz
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ 𝑍 ) ) = ( lim inf ‘ 𝐹 ) )