Metamath Proof Explorer


Theorem liminfresuz2

Description: If the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresuz2.1 ( 𝜑𝑀 ∈ ℤ )
liminfresuz2.2 𝑍 = ( ℤ𝑀 )
liminfresuz2.3 ( 𝜑𝐹𝑉 )
liminfresuz2.4 ( 𝜑 → dom 𝐹 ⊆ ℤ )
Assertion liminfresuz2 ( 𝜑 → ( lim inf ‘ ( 𝐹𝑍 ) ) = ( lim inf ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 liminfresuz2.1 ( 𝜑𝑀 ∈ ℤ )
2 liminfresuz2.2 𝑍 = ( ℤ𝑀 )
3 liminfresuz2.3 ( 𝜑𝐹𝑉 )
4 liminfresuz2.4 ( 𝜑 → dom 𝐹 ⊆ ℤ )
5 dmresss dom ( 𝐹 ↾ ℝ ) ⊆ dom 𝐹
6 5 a1i ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ dom 𝐹 )
7 6 4 sstrd ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ ℤ )
8 1 2 3 7 liminfresuz ( 𝜑 → ( lim inf ‘ ( 𝐹𝑍 ) ) = ( lim inf ‘ 𝐹 ) )